請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36702完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林達德 | |
| dc.contributor.author | Jr-Shin Chen | en |
| dc.contributor.author | 陳致信 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:11:49Z | - |
| dc.date.available | 2005-07-22 | |
| dc.date.copyright | 2005-07-22 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-20 | |
| dc.identifier.citation | 1 Adli, A., Y. Yamamoto, T. Nakamura, and K. Kitaoka. 2000. Automatic interference controller device for eliminating the power-line interference in biopotential signals. Instrumentation and Measurement Technology Conference, 2000. IMTC 2000. Proceedings of the 17th IEEE, 1-4 May 2000.:1358-1362.
2 Afonso, V. X., W. J. Tompkins, and J. G. Webster. 1994. Quantitative measures of respiratory sinus arrhythmia for apnea detection. Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE. 1:129-130. 3 Beaty, J. D., H. D. Tagare, D. P. Dione, A. J. Sinuass, and D. K. Wilder. 1999. Physiological monitoring using digital sonomicrometry via telemetry. IEEE.125-126. 4 C. Gam0, P. G. d., A.Zaidi,A.Fitzpatrick. 2000. An implementation of the wavelet transform for ecg analysis. Advances in Medical Signal and Information Processing, 2000. 5 Carhajal-Castaneda, V. M. and D. Villazon-Bustillos. 1990. A simple physiological monitor system for neonatal applications. Engineering in Medicine and Biology Society, 1990. Proceedings of the Twelfth Annual International Conference of the IEEE.:1054-1055. 6 Chi, C. W., M. C. Lee, C. W. Shieh, Y. S. Huang, and M. S. Young. 1999. A multi-channel data collection system for physiological parameters. [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, 1999. Proceedings of the First Joint. 2:893. 7 Christopher M. Tenedero, M. A. D. R., and Luis G. Sison, Ph.D. 2004. Design and implementation of a single-channel ecg amplifier with dsp post-processing in matlab. Instrumentation, Robotics, and Controls Laboratory University of the Philippines, Diliman, Quezon City. 8 Cohen, K. P., W. J. Tompkins, A. Djohan, J. G. Webster, and Y. H. Hu. 1995. Qrs detection using a fuzzy neural network. Engineering in Medicine and Biology Society, 1995. IEEE 17th Annual Conference. 9 Cole, A. M. and B. Q. Tran. 2002. Home automation to promote independent living in elderly populations. [Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] EMBS/BMES Conference, 2002. Proceedings of the Second Joint. 3:2422-2423. 10 Company-Bosch, E. 2003. Ecg front-end design is simplified with microconverter. Eckart Hartmann. 11 Company-Bosch, E. 2003. Ecg front-end design is simplified with microconverter. Analog Dialogue.1-5. 12 Dishman, E. 2004. Inventing wellness systems for aging in place. Computer. 37(5):34-41. 13 E. Kishida, Y. K., H. Mizuta, K. Yana, M. Kyoso, M. Ishijima, Y. Ishihara, T. Ito, K. Tamura. 2003. Reconstruction of underlying heart rate from integrated pulse frequency modulated heart pulses with if fluctuations. Annual Intemational Conference of the IEEE EMBS Cancun. 14 Fowler, K. 2001. Giving meaning to measurement. IEEE Instrumentation & Measurement Magazine. 4(3):41-45. 15 Gottlieb, E., J. Vu, and J. Winters. 1999. Home healthcare wireless physiological monitoring: Systems integration and human factors evaluation. [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, 1999. Proceedings of the First Joint. 2:688. 16 Greg Welch, G. B. 2005. An introduction to the kalman filter greg welch and gary bishop. University of North Carolina at Chapel Hill Department of Computer Science. 17 Henderson, R., D. Mahar, A. Saliba, F. Deane, and R. Napier. 1998. Electronic monitoring systems: An examination of physiological activity and task performance within a simulated keystroke security and electronic performance monitoring system. Computer Studies. 48:143-157. 18 Hoffman, G. S., M. M. Miller, M. Kabrisky, P. S. Maybeck, and J. F. Raquet. 2002. A novel electrocardiogram segmentation algorithm using a multiple model adaptive estimator. Decision and Control, 2002, Proceedings of the 41st IEEE Conference on. 3:2524-2529. 19 Ishijima, M. 1993. Monitoring of electrocardiograms in bed without utilizing body surface electrodes. IEEE Transaction on Biomedical Engineering. 40(6):593-594. 20 Ishijima, M. 1996. Long-term cardiopulmonary monitoring in bed without subject awareness. IEEE Engineering in Medicine and Biology Society, Amsterdam:65-66. 21 Ishijima, M. 1999. A two-years trend in the recovery speed of heart rate during bathing stress. Proceedings of The First Joint BMESEMBS Conferencs. 22 Karin, J., M. Hirsch, O. Segal, and S. Akselrod. 1994. Non invasive fetal ecg monitoring. IEEE Computers in Cardiology.365-368. 23 Kawarada, A., M. Nambu, T. Tamura, M. Ishijima, K.-i. Yamakoshi, and T. Togawa. 2000. Fully automated monitoring system of health status in daily life. Proceedings of the 22'd Annual EMBS International Conference, Chicago IL:531-533. 24 Kawarada, A., A. Tsukada, K. Sasaki, M. Ishijimaz, T. Tamura, T. Togawa, and K.-i. Yamakoshi. 1999. Automated monitoring system for home health care. BMES/EMBS Conference. 2:694. 25 Kawaradal, A., T. Takagi, A. Tsukadal, K. Sasakil, M. Ishijima, T. Tamura, T. Togawa, and K.-i. Yamakoshi. 1998. Evaluation of automated health monitoring system at the 'welfare techno house'. IEEE Engineering in Medicine and Biology Society:1984-1987. 26 Laudon, M. K., J. G. Webster, R. Frayne, and T. M. Grist. 1998. Minimizing interference from magnetic resonance imagers during electrocardiography. Biomedical Engineering, IEEE Transactions on. 45(2):160-164. 27 Leslie, C., F. J. Weibell, and E. A. Pfeiffer. 1996. Heart and circulation. in Biomedical electronics & instrumentation. Vol. 8. PHI. 28 Matthew, O. Visa and serial communication. National Instruments. 29 Mendoza, G. G. and B. Q. Tran. 2002. In-home wireless monitoring of physiological data for heart failure parients. [Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] EMBS/BMES Conference, 2002. Proceedings of the Second Joint. 3:1849-1850. 30 Moritz, W. 1973. A system for studying the physiologic response of divers to hyperbaric environments. OCEANS. 5:129-132. 31 Pentland, A. 2004. Healthwear medical technology becomes wearable. Computer. 37(5):42-49. 32 Rezazadeh, M. and N. E. Evans. 1990. Multichannel physiological monitor plus simultaneous full-duplex speech channel using a dial-up telephone line. Biomedical Engineering, IEEE Transactions on. 37(4):428-432. 33 Ross, P. E. 2004. Growing old in a wireless world will mean not just keeping your body healthy but keeping it online. IEEE Spectrum. 34 Ross, P. E. 2004. Managing care through the air. IEEE Spectrum.26-31. 35 Shen Luo, W., J. Tompkins, and J. G. Webster. 1994. Cardiogenic artifact cancellation in apnea monitoring. Proceedings of the 16th Annual International Conference of the IEEE. 2:968-969. 36 Togawa, T., T. Tamura, J. Zhou, H. Mizukami, and M. Ishijima. 1989. Physiological monitoring systems attached to the bed and sanitary equipments. Engineering in Medicine and Biology Society, 1989. Images of the Twenty-First Century. Proceedings of the Annual International Conference of the IEEE Engineering in. 5:1461-1463. 37 Tran, B. Q. 1999. Pulmonary function testing system for home-based rehabilitation. [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, 1999. Proceedings of the First Joint. 2:682. 38 Tran, B. Q. 2002. Home care technologies for promoting successful aging in elderly populations. [Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] EMBS/BMES Conference, 2002. Proceedings of the Second Joint. 3:1898-1899. 39 Tran, B. Q., A. Kinsella, J. Winters, L. Thiel, C. Prandoni, and E. Hughes. 1999. Utility of mass-market technologies to enable care provided by laypersons in the home environment. [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, 1999. Proceedings of the First Joint. 2:715. 40 Zhenyu Guo, G. M., Louis-Gilles Durand, Murray Loew. 2005. Development of a virtual instrument for data acquisition and analysis of the phonocardiogram. Electrical Engineering and Computer Science, The George Washington university, Washington. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36702 | - |
| dc.description.abstract | 本研究的目的是研製無線生理訊號系統,並且測試此系統的性能。無線生理訊號系統是希望能夠透過網際網路的方式監控此一系統,並且將此系統所得到的數據擷取和分析。所研製完成的無線生理訊號系統可以分為生理訊號感測元件、微電腦運算處理器、藍芽無線模組、整合軟體四個子系統。生理訊號感測元件是利用儀表放大電路作為基礎,以電極貼片所量測到心臟所釋放的微小電壓訊號經過差動和放大以及濾波等動作,得到所謂的ECG訊號,並且利用個人電腦將連續訊號擷取下來,用來作其他的訊號分析和處理。微電腦運算處理器用來主要是用來處理經由生理訊號感測元件所得到的類比訊號,由其內部的AD轉換元件將訊號轉換成16進位的數位訊號。藍芽無線模組則是將所得到的數位訊號以無線的方式將訊號傳回伺服器。整合軟體的工作則是把所得到的數位訊號轉換成的波形訊號,並且即時顯示於監控螢幕上,另一方面整合軟體的工作也需要配合伺服器的設定,使程式介面輸出成為網頁資訊,使醫護人員能以網際網路瀏覽器的方式就可以監控無線生理訊號系統的狀態。目前系統已經成功做出一對三的無線生理訊號監測系統,依此系統的設計方式可擴大至多人架構,每一組可攜帶式硬體的大小約為90×55×20 mm3的大小,並且以藍芽傳輸的方式將心電圖、心率、以及體溫的訊號傳回伺服器端,並且可以透過伺服器的網際網路連線方式,以遠端的方式監視並且控制生理訊號監控系統。 | zh_TW |
| dc.description.abstract | The goal of this research is to develop a wireless physiological monitoring system and to test its performance. The wireless physiological monitoring system was implemented on an internet-based software environment to allow for data acquisition, transmission and analyses. This wireless physiological monitoring system can be divided into four subsystems; a physiological signal sensor component, a microprocessor, a bluetooth wireless module and an integrated software. The physiological signal sensor component is composed of electrode patches and an instrumentation amplifier. Electrode patches is attached to the patient’s heart area. After the electrode patches receive the signal from the heart, the differential signal is measured and then amplified and filtered for the final output of ECG signal. The ECG signal is transmitted to the program running on a personal computer via bluetooth wireless module to capture those signals for future analysis and processing. The microprocessor uses its ADC (analog to digital converter) to process the analog signals received from the physiological signal sensor component and convert it to hexadecimal digital code. The bluetooth wireless module transmits those signals back to the server wirelessly. The integrated software system then converts those digital signals into wave signals and presents them on the monitoring screen simultaneously. On the other hand, the integrated software system also conforms to the server’s setting and presents these data on the websites so that physician and nurses can use the internet browser to get the most recent info of the monitoring system. This physiological monitoring system can monitor three patients at a time and can be extended to more patients. The size of each portable hardware is about 90×55×20 mm3. This portable hardware can detect patient’s ECG signal, heart rate, and body temperature. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:11:49Z (GMT). No. of bitstreams: 1 ntu-94-R92631006-1.pdf: 1458208 bytes, checksum: 02ba5c3f94df0a3d69e5f62cbcdfc902 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 前言與研究目的 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻探討 4 2.1生理訊號系統的起源 4 2.2生理監測系統 4 2.3環境活動監測系統 6 2.4遠端醫療與生理監測系統 6 2.5 生理訊號—心電圖(Electrocardiogram) 7 2.5.1心臟的傳導 8 2.5.2心搏週期 8 2.6 生理訊號—心跳計算 10 2.7 生理訊號—肌電圖(Electromyography) 12 2.8無線傳輸 12 2.8.1 射頻(Radio Frequency) 12 2.8.2 藍芽(Bluetooth) 13 第三章 研究設備與方法 16 3.1系統架構 16 3.2實驗設備 18 3.2.1微電腦輸出入介面 19 3.2.2無線通訊介面 22 3.2.3 ECG訊號模擬器 22 3.3訊號擷取 24 3.3.1心電訊號擷取電路 24 3.3.2儀表放大電路 24 3.3.3電源供應電路 28 3.3.4體溫訊號擷取電路 29 3.4訊號處理 32 3.4.1多工器 32 3.4.2可編譯增益放大器及參考電壓 33 3.4.3濾波電路 36 3.4.4二的補數與十六進位轉碼原理 38 3.4.5心率計算 43 3.5訊號無線傳輸 47 3.6生理訊號監測軟體 47 3.6.1虛擬連接埠模組(VISA) 47 3.6.2軟體控制系統 49 第四章 結果與討論 52 4.1系統整合 52 4.2 AD轉換準確度分析 56 4.3濾波之影響 63 4.4通訊元件之影響 68 4.5虛擬遠端操作之應用 71 4.6整體系統架構之建立與實驗 72 4.6.1模擬心率輸入之試驗 77 4.6.2訊號擷取卡與無線生理訊號系統之比較 77 第五章 結論與建議 80 5.1結論 80 5.2建議 81 參考文獻 82 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心電圖 | zh_TW |
| dc.subject | 無線藍芽 | zh_TW |
| dc.subject | 生理訊號 | zh_TW |
| dc.subject | 遠端監控 | zh_TW |
| dc.subject | ECG | en |
| dc.subject | remote control | en |
| dc.subject | physiological signals | en |
| dc.subject | wireless bluetooth | en |
| dc.title | 整合無線通訊與網路技術之生理訊號監測系統研究 | zh_TW |
| dc.title | Integration of Wireless Communication and Internet Technology for a Physiological Monitoring System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江昭皚,鄭宗記 | |
| dc.subject.keyword | 無線藍芽,心電圖,生理訊號,遠端監控, | zh_TW |
| dc.subject.keyword | wireless bluetooth,ECG,physiological signals,remote control, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
