Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36676
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立昇
dc.contributor.authorChe-Chung Linen
dc.contributor.author林哲聰zh_TW
dc.date.accessioned2021-06-13T08:10:38Z-
dc.date.available2005-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-20
dc.identifier.citation[1] Pratap, Misra. And Per, Enge, Global Positioning System: Signals, Measurement, and Performance. Ganga-Jamuna Press 2001
[2] James Bao-Yen Tsui, Fundamentals of Global Positioning System Receivers: A Software Approach. John Wiley & Sons, Inc., 2000.
[3] Gelb, A., Applied Optimal Estimation. The M.I.T. Press, Cambridge, Mass., 1974.
[4] J. S. R. Jang, S. T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing. Prentice Hall, 1997.
[5] Chin–Teng Lin, C.S. George Lee, Neural Fuzzy Systems. Prentice Hall, 1996.
[6] John H. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI 1975.
[7] H. Sairo, D. Akopian and J. Takala, “Weighted dilution of precision as quality measure in satellite positioning,” IEE Proceedings-Radar, Sonar and Navigation, Volume 150, Issue 6, 1 Dec. 2003 pp.430 – 436.
[8] Chansik Park, Ilsun Kim, Jang Gyu Lee and Gyu-In Jee. “A satellite selection criterion incorporating the effect of elevation angle in gps positioning,” Contro Eng. Practive, Vol. 4. No. 12, pp. 1741-1746,1996.
[9] Yang Yong and Miao Lingjuan. “GDOP Results in All-in-view Positioning and in Four Optimum Satellites Positioning with GPS PRN Codes Ranging ” PLANS 2004 Position Location and Navigation Symposium, 2004. 26-29 April 2004 pp.723 – 727.
[10] C. Karr, “Design of an adaptive fuzzy logic controller using a genetic algorithm,” in Proc. 4th Int. Conf. Genetic Algorithms, 1991, pp. 450–457.
[11] P. Thrift, “Fuzzy logic synthesis with genetic algorithms,” in Proc.4th Int. Conf. Genetic Algorithms. Los Altos, Ca: Morgan Kaufmann,1991, pp. 509–513.
[12] Y. Yuan and H. Zhuang, “A genetic algorithm for generating fuzzy classification rules,” Fuzzy Sets Syst., vol. 84, pp. 1–19, 1996.
[13] J. Kinzel, F. Klawonn, and R. Kruse, “Modifications of genetic algorithms for designing and optimizing fuzzy controllers,” IEEE World Congress on Computational Intelligence., Proceedings of the Evolutionary Computation, 1994. First IEEE Conference on 27-29 June 1994 pp.28 - 33 vol.1.
[14] B. Carse, T. C. Fogarty, and A. Munro, “Evolving fuzzy rule based controllers using genetic algorithms,” Fuzzy Sets and Systems, Vol. 80, pp. 273-293, 1996.
[15] Kit-sang Tang, Kim-fung Man, Zhi-feng Lin and Sam Kwong, “Minimal Fuzzy Memberships and Rules Using Hierarchical Genetic Algorithms,” IEEE Tran. On Industrial electronics, Vol.45, NO.1, February 1998.
[16] M. Lee and H. Takagi, “Integrating design stages of fuzzy systems using genetic algorithms,” in Proc. 2nd IEEE Int. Conf. Fuzzy Systems, San Francisco, 1993, pp. 612–617.
[17] A. Homaifar and E. McCormick, “Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms,” IEEE Transactions on Fuzzy Systems Volume 3, Issue 2, May 1995 pp.129 – 139.
[18] N.E Nawa and T. Furuhashi, “Fuzzy system parameters discovery by bacterial evolutionary algorithm.” IEEE Transactions on Fuzzy Systems, Volume 7, Issue 5, Oct. 1999, pp 608-616.
[19] 林中傑, 以模糊法則改善GPS 定位精度, 台大電機所碩士論文,中華民國八十六年六月.
[20] 陳浩祥, 長時間載波平滑碼定位法, 台大應力所碩士論文, 中華民國八十八年六月.
[21] 吳文弘, 遺傳演算法之無參數化懲罰策略及無基因喪失交配策略 研究, 台灣科技大學機械所博士論文, 中華民國九十三年六月二十九日.
[22] 莊智清, 黃國興, 電子導航, 全華科技圖書股份有限公司,中華民國九十年四月.
[23] 楊英魁, 孫宗瀛, 鄭魁香,林建德,蔣旭堂, 模糊控制理論與技術, 全華科技圖書股份有限公司,中華民國九十一年九月.
[24] 蘇木春, 張孝德, 機器學習: 類神經網路、模糊系統以及基因演算法則, 全華科技圖書股份有限公司, 中華民國九十二年十二月.
[25] 張斐章, 張麗秋, 黃浩倫, 類神經網路理論與實務, 東華書局, 中華民國九十三年三月.
[26] 周鵬程, 類神經網路入門活用Matlab, 全華科技圖書股份有限公司, 中華民國九十三年三月.
[27] 周鵬程, 遺傳演算法原理與應用修訂版, 全華科技圖書股份有限公司,中華民國九十一年十月.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36676-
dc.description.abstractGPS 接收機的定位精度對於使用者而言相當重要,在定位的過程中,定位精度與數個因子之間具有某種程度的關連性。本文所提出的歸一化精確度稀釋鬆弛值(Normalized Dilution of Precision Slackness Value, NDSV) 衍生自精確度稀釋值(Dilution of Precision, DOP),此一因子代表單一衛星之幾何誤差。NDSV、訊號雜訊比(Signal-to-Noise Ratio, SNR)及衛星仰角(elevation angle),三者和定位誤差具微妙且相互矛盾的關係。當我們所觀測到的衛星數大於四,即可以此三項因子為基準,透過模糊控制器(Fuzzy Controller)決定每個衛星之訊號在權重型最小平方法(Weighted-Least-Square, WLS)中的權重,進而提昇定位精度。
傳統上以試誤法所設計之模糊控制器的效能不甚理想。為了要提昇模糊控制器的效能,本文提出了一種以遺傳演算法(Genetic Algorithms, GAs)將模糊控制器的三個部份作最佳化,卻不違反常見之歸屬函數設計準則的新方法。這其中包括了歸屬函數之最佳化、歸屬函數之數量最佳化與模糊規則最佳化。在此同時,歸屬函數之數量亦透過適應函數之設計而獲得最簡化。
一旦我們得到最佳化之模糊控制器,權重型最小平方法即可同時計算出較準確之位置與速度。將此估測量納入卡門濾波器(Kalman filter)中,定位精度即可獲得進一步的提升。
數值結果證實,權重型最小平方法的定位結果優於最小平方法,且引入權重型最小平方法之卡門濾波器,其所估測之位置與速度亦優於引用最小平方法之結果。經本文提出之方法所訓練出的模糊控制器,由於具備效能最佳化、結構最簡化之特性,故此一模糊控制器具實現於低階GPS接收機之潛力。
zh_TW
dc.description.abstractThe positioning accuracy of the GPS receiver is essential to users. During positioning, several factors are related to positioning accuracy. NDSV (Normalized Dilution of Precision Slackness Value) proposed here is derived from DOP (Dilution of Precision) and represents the relationship of geometric error to a single satellite. There are tradeoffs among NDSV, SNR and elevation angle to positioning error. If the number of observed satellites is above four, the WLS (Weighted-Least-Square) method which considers three factors (NDSV, SNR, elevation angle) to determine the weighting of the measurement of each satellite through fuzzy controller is applied to enhance the positioning accuracy.
However, the fuzzy controller is difficult to be optimized through trial-and-error method. To solve this problem, we proposed a new approach to design fuzzy controller in three stages (membership functions (mfs), the number of mfs, rules) via GAs (Genetic Algorithms) without violating the common design antecedent of mfs. At the same time, the number of mfs is optimized and optimally reduced through fitness function design.
The optimized fuzzy controller can be used to determine position and velocity through WLS method simultaneously. Furthermore, we can include the more precise estimated position and velocity from WLS into Kalman filter as measurement to further improve positioning accuracy.
The numerical results show that the positioning using WLS method is improved in comparison with LS method. The Kalman filter which includes the estimated position and velocity from WLS as measurements can further improved the positioning accuracy in comparison with including the estimated position and velocity from LS. Due to its performance and simplified structure, the trained fuzzy controller may be potentially used on a low-cost GPS receiver.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:10:38Z (GMT). No. of bitstreams: 1
ntu-94-R92543052-1.pdf: 2196122 bytes, checksum: 80371b1404fe1ee14c6a2f269918f3d5 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents a
Abstract c
List of figures e
List of Tables h
1 Introduction 1
1.1 Motivation ..……………………………………………………1
1.2 Structure of This Work ………………………………………3
2 GPS Positioning Algorithm and Error Source 5
2.1 Coordinate systems……………………………………………5
2.2 GPS Positioning Algorithm……………………………………8
2.3 Doppler Shift Effect…………………………………………13
2.4 Positioning Error Sources……………………………………15
2.4.1 Measurement Error……………………………………………15
2.4.2 Satellite Geometric Configuration (DOP, DSV & NDSV).…………………………………………………………………………18
2.4.3 SNR……………………………………………………………20
2.4.4 Elevation Angle.…………………..………………………21
3 Introduction to Fuzzy Set Theory and Genetic Algorithms 23
3.1 Introduction to fuzzy set theory…………………………………………………………………23
3.1.1 Fuzzy controller framework………………………………24
3.1.2 Designing fuzzy controller………………………………26
3.1.3 An Implementation of Fuzzy Controller in WLS Positioning Method…….……………………………………………32
3.2 Introduction of Genetic Algorithms……………………………………………………………37
3.2.1 Encoding scheme………………………………………………38
3.2.2 Fitness function……………………………………………39
3.2.3 Selection……………………………………………………40
3.2.4 Crossover……………………………………………………41
3.2.5 Mutation………………………………………………………42
3.2.6 Elitist strategy……………………………………………43
3.2.7 The fundamental theorem of GAs…………………………44
4 Training Algorithm 48
4.1 Encoding Scheme and Fitness Function Design……………49
4.2 The Training framework of a Three-Stages GA-Optimized Fuzzy Controller in WLS Positioning……………………………………………………………58
4.3 The Combination of Kalman Filter and WLS Positioning Method…………………………………………………………………59
5 Numerical results 65
5.1 Training Result…………………………………………………65
5.2 Application Results……………………………………………67
5.3 Numerical Results Analysis…………………………………92
6 Conclusion 93
6.1 Conclusion and Discussion………………………………………93
6.2 Future Work………………………………………………………95
References……………………………………………………………96
dc.language.isoen
dc.subject模糊控制器zh_TW
dc.subject全球定位系統zh_TW
dc.subject權重最小平方法zh_TW
dc.subject遺傳演算法zh_TW
dc.subject最佳化zh_TW
dc.subjectGPSen
dc.subjectFuzzy controlleren
dc.subjectOptimizationen
dc.subjectGenetic Algorithmsen
dc.subjectWeighted-Least-Square Methoden
dc.title利用遺傳演算法最佳化模糊控制器之GPS定位權重最小平方法zh_TW
dc.titleWeighted-Least-Square Method for GPS Positioning Using Genetic-Algorithms-Optimized Fuzzy Controlleren
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.coadvisor張帆人
dc.contributor.oralexamcommittee陳永耀,莊季高,劉進興
dc.subject.keyword全球定位系統,權重最小平方法,遺傳演算法,最佳化,模糊控制器,zh_TW
dc.subject.keywordGPS,Weighted-Least-Square Method,Genetic Algorithms,Optimization,Fuzzy controller,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2005-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved