Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36665
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭
dc.contributor.authorWei-Min Koen
dc.contributor.author葛偉民zh_TW
dc.date.accessioned2021-06-13T08:10:07Z-
dc.date.available2005-07-22
dc.date.copyright2005-07-22
dc.date.issued2005
dc.date.submitted2005-07-21
dc.identifier.citationReferences
[1] C. C. Chang and S. Y. Lee, “Retrieval of symbolic pictures”, Journal of
Information Science and Engineering, Vol. 7, No. 3, Sept. 1991, pp. 405-422.
[2] J. S. Yoo, S. Shekhar, J. Smith, J. P. Kumquat, “Data mining: a partial join
approach for mining co-location patterns”, In Proc. of the 12th annual ACM Int.
Workshop on Geographic Information Systems, November 2004.
[3] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining using a
bitmap representation”, In Proc. of Int. Conf. on Knowledge Discovery and
Data Mining (KDD’02), Edmonton, Alberta, Canada, July 2002, pp. 429-435.
[4] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu,
“PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern
growth”, In Proc. of Int. Conf. on Data Engineering (ICDE ’01), Heidelberg,
Germany, April 2001, pp. 215-224.
[5] K. Koperski and J. Han, “Discovery of spatial association rules in geographic
information databases”, In Proc. of Int. Sym. on Advance in Spatial Databases,
SSD, LNCS, vol. 951, Springer-Verlag, 1995, pp. 47-66..
[6] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules between
sets of items in large databases”, In Proc. 1993 ACM-SIGMOD Int. Conf. on
Management of Data, Washington, D.C., May 1993, pp. 207-216.
[7] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules”, In
Proc. of Int. Conf. on Very Large Data Bases (VLDB’94), Santiago, Chile,
September 1994, pp. 487-499.
[8] R. Agrawal and R. Srikant, “Mining sequential patterns”, In Proc. of the 20th Int.
Confidence on Very Large Databases, Santiago, Chile, September 1994.
[9] R. Ng. and J. Han, “Efficient and effective clustering method for spatial data
mining”, In Proc. of 1994 Int. Conf. on Very Large Data Bases, Morgan
Kaufmann, San Francisco, CA, 1994, pp. 144-155.
[10] S. Clenn, “The art of spatial data mining: A review of a new algorithm for
discovery of spatial association rules”, Expert System, fall 2001.
35
[11] S. Shekhar, and Y. Huang, “Co-location rules mining: a summary of Results”, In
Proc. of the 7th Int. Symp. on Spatial and Temporal Databases, 2001.
[12] S. Shekhar, P. Zhang, Y. Huang, and R. R. Vatsavai. Trends in Spatial Data
Mining. In Data Mining: Next Generation Challenges and Future Directions,
Hillol Kargupta and Anupam Joshi (editors), AAAI/MIT Press, 2003.
[13] U. Fayyad and P. Smyth, “Image database exploration: progress and challenges”,
In Proc. of 1993 Knowledge Discovery in Database Workshop, AAAI Press,
Menlo Park, CA, 1993, pp. 44-27.
[14] W. Lu, J. Han, and B. C. Ooi. “Discovery of general knowledge in large spatial
databases”, In Proc. of Far East Workshop on Geographic Information Systems,
Singapore, June 1993, pp. 275-289.
[15] W. Hsu, J. Dai and M. Lee, “Mining viewpoint patterns in image databases”, In
Proc. of the Ninth ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, August 2003.
[16] X. Zhang, N. Mamoulis, D. W. Cheung, Y. Shou, “Fast mining of spatial
collocations”, In Proc. of the 2004 ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, August 2004.
[17] Y. Qian, K. Zhang, “Data mining (DM): GraphZip: a fast and automatic
compression method for spatial data clustering”, In Proc. of the 2004 ACM Sym.
on Applied computing, March 2004.
[18] Y. C. Huang, “Mining Frequent spatial co-relation patterns”, Master Thesis,
Department of Computer Science, National Chengchi University, Taiwan, 2004.
[19] Y. K. Chan and C. C. Chang, “Spatial similarity retrieval in video databases”,
Journal of Visual Communication and Image Representation, Vol. 12, 2001, pp.
107-122.
[20] Y. Morimoto, “Mining frequent neighbor class sets in spatial databases”, In Proc.
of ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36665-
dc.description.abstract在網路多媒體資料逐步成長的現在,空間資料挖掘(Spatial data mining),扮演著重要角色,它能發掘空間資料庫中的隱性知識、物件間空間關聯亦或找尋出令人感興趣的樣式。這篇論文著重於找尋物件間空間關聯規則,過去已有學者提出使用viewpoint mining 方法與使用2D 字串表示法找尋co-location rules 的方法。然而,實驗結果可能過於詳細亦或物件間空關關係的描述過於模湖不清。
因此,我們提出一個新的演算法「9DLT-Miner」去找尋空間關聯規則,並利用9DLT 資料表示方式描述每一個影像。9DLT-Miner 採用Apriori 方法的概念、anti-monotone 與9DLT 的過濾策略。9DLT-Miner 分為兩個階段。第一階段,找出所有長度1 的frequent 樣式。第二階段,使用長度k (k>=1)的樣式去產生所有長度k+1 的候選樣式並計算其support 數,以確認是否為frequent 樣式。反覆上
述步驟,直到找不出任何frequent 樣式為止。從實驗結果顯示,9DLT-Miner 能有效過濾大量不可能的候選樣式,可節省大量時間。
zh_TW
dc.description.abstractNowadays, there are the increasing numbers of images accumulated on the Internet. Spatial data mining play an important role of extracting implicit knowledge,
spatial relationships among objects and other interesting patterns stored in spatial databases. In this thesis, we focus on finding the association rules of spatial relations
among objects in an image. Previously, some scholars have proposed viewpoint mining and co-relation mining method based on the 2D string representation. However, the mining results may be too detailed and the relations between the objects are vague.
Therefore, we propose a novel algorithm, 9DLT-Miner, where every image is represented by the 9DLT representation. 9DLT-Miner adopts the concept of the Apriori algorithm as well as uses the anti-monotone and 9DLT pruning strategies. Our
proposed method consists of two phase. In the first phase, we find all frequent patterns of length one. In the second phase, we use the frequent k-patterns (k>=1) to generate all candidate (k+1)-patterns and then scan the databases to count the support and check if a pattern is frequent. Repeat the steps in phase 2 until no more frequent
patterns can be found. Experimental results show that 9DLT-Miner prunes a large number of impossible frequent candidates, and it’s more efficient and scalable.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:10:07Z (GMT). No. of bitstreams: 1
ntu-94-R92725030-1.pdf: 383290 bytes, checksum: a336ac46058d53889af00ef4afad25fe (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents……………………i
List of Figures………………………ii
List of Tables………………….……iii
Chapter 1 Introduction ...........................1
Chapter 2 Literature Survey.......................3
2.1 9DLT Matrix ..................................3
2.2 Mining Association Rules with the Apriori Algorithm...4
2.3 Mining Spatial Patterns.......................6
2.4 Discussion ...................................12
Chapter 3 Mining Spatial Relation Patterns........13
3.1 Problem Definition............................13
3.2 Our Proposed Algorithm........................15
3.2.1 Candidate generation .......................15
3.2.2 The pruning strategies......................17
3.2.3 The mining algorithm .......................19
Chapter 4 Performance Evaluation .................25
4.1 Synthetic Data and Parameters ................25
4.2 Experiments on Synthetic Data.................26
4.3 Experiments on Real Data .....................30
Chapter 5 Conclusions and Future Work ............33
References........................................34
dc.language.isoen
dc.subject9DLT字串zh_TW
dc.subject空間關聯規則zh_TW
dc.subject空間資料探勘zh_TW
dc.subjectspatial data miningen
dc.subjectspatial association rulesen
dc.subject9DLT stringen
dc.title利用9DLT字串表示法找尋空間關聯規則方法zh_TW
dc.titleMining Spatial Association Rules with 9DLT String Representationen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉敦仁,沈錳坤
dc.subject.keyword空間資料探勘,9DLT字串,空間關聯規則,zh_TW
dc.subject.keywordspatial data mining,9DLT string,spatial association rules,en
dc.relation.page35
dc.rights.note有償授權
dc.date.accepted2005-07-21
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
374.31 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved