請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36657
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許輝吉 | |
dc.contributor.author | Shih-Yeh Lin | en |
dc.contributor.author | 林事曄 | zh_TW |
dc.date.accessioned | 2021-06-13T08:09:46Z | - |
dc.date.available | 2007-08-02 | |
dc.date.copyright | 2005-08-02 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-20 | |
dc.identifier.citation | Alaiya A. A., Franzen B., Fujioka K., Moberger B., Schedvins K., Silfversvard C., Linder S., and Auer G. (1997). Phenotypic analysis of ovarian carcinoma: polypeptide expression in benign, borderline and malignant tumors. Int J Cancer 73: 678-683.
Arbuthnot P., Kew M., and Fitschen W. (1991). c-fos and c-myc oncoprotein expression in human hepatocellular carcinomas. Anticancer Res 11: 921-4. Bailey M. A., and Brunt E. M. (2002). Hepatocellular carcinoma: predisposing conditions and precursor lesions. Gastroenterol Clin North Am 31: 641-62. Baldassarre G., Belletti B., Nicoloso M. S., Schiappacassi M., Vecchione A., Spessotto P., Morrione A., Canzonieri V., and Colombatti A. (2005). p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 7: 51-63. Blum H. E. (2003). Molecular therapy and prevention of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2: 11-22. Bond J., Roberts E., Mochida G. H., Hampshire D. J., Scott S., Askham J. M., Springell K., Mahadevan M., Crow Y. J., Markham A. F., Walsh C. A., and Woods C. G. (2002). ASPM is a major determinant of cerebral cortical size. Nat Genet 32: 316-20. Bond J., Scott S., Hampshire D. J., Springell K., Corry P., Abramowicz M. J., Mochida G. H., Hennekam R. C., Maher E. R., Fryns J. P., Alswaid A., Jafri H., Rashid Y., Mubaidin A., Walsh C. A., Roberts E., and Woods C. G. (2003). Protein-truncating mutations in ASPM cause variable reduction in brain size. Am J Hum Genet 73: 1170-7. Brechot C., Gozuacik D., Murakami Y., and Paterlini-Brechot P. (2000). Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Semin Cancer Biol 10: 211-31. Camoletto P., Peretto P., Bonfanti L., Manceau V., Sobel A., and Fasolo A. (1997). The cytosolic stathmin is expressed in the olfactory system of the adult rat. Neuroreport 8: 2825-2829. Cassimeris L. (2002). The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 14: 18-24. Challen C., Guo K., Collier J. D., Cavanagh D., and Bassendine M. F. (1992). Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas. J Hepatol 14: 342-6. Cheung W. M., Chu A. H., Chu P. W., and Ip N. Y. (2001). Cloning and expression of a novel nuclear matrix-associated protein that is regulated during the retinoic acid-induced neuronal differentiation. J Biol Chem 276: 17083-91. Clute P., and Pines J. (1999). Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1: 82-7. Collier J. D., Guo K., Mathew J., May F. E., Bennett M. K., Corbett I. P., Bassendine M. F., and Burt A. D. (1992). c-erbB-2 oncogene expression in hepatocellular carcinoma and cholangiocarcinoma. J Hepatol 14: 377-80. Curmi P. A., Nogues C., Lachkar S., Carelle N., Gonthier M. P., Sobel A., Lidereau R., and Bieche I. (2000). Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours. Br J Cancer 82: 142-50. Daniel C., Pippin J., Shankland S. J., and Hugo C. (2004). The rapamycin derivative RAD inhibits mesangial cell migration through the CDK-inhibitor p27KIP1. Lab Invest 84: 588-96. den Elzen N., and Pines J. (2001). Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J Cell Biol 153: 121-36. Di Bisceglie A. M. (2002). Epidemiology and clinical presentation of hepatocellular carcinoma. J Vasc Interv Radiol 13: S169-71. Ding S. F., Habib N. A., Dooley J., Wood C., Bowles L., and Delhanty J. D. (1991). Loss of constitutional heterozygosity on chromosome 5q in hepatocellular carcinoma without cirrhosis. Br J Cancer 64: 1083-7. do Carmo Avides M., and Glover D. M. (1999). Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. Science 283: 1733-5. do Carmo Avides M., Tavares A., and Glover D. M. (2001). Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nat Cell Biol 3: 421-4. Emi M., Fujiwara Y., Nakajima T., Tsuchiya E., Tsuda H., Hirohashi S., Maeda Y., Tsuruta K., Miyaki M., and Nakamura Y. (1992). Frequent loss of heterozygosity for loci on chromosome 8p in hepatocellular carcinoma, colorectal cancer, and lung cancer. Cancer Res 52: 5368-72. Evans P. D., Anderson J. R., Vallender E. J., Gilbert S. L., Malcom C. M., Dorus S., and Lahn B. T. (2004). Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum Mol Genet 13: 489-94. Friedrich B., Gronberg H., Landstrom M., Gullberg M., and Bergh A. (1995). Differentiation-stage specific expression of oncoprotein 18 in human and rat prostatic adenocarcinoma. Prostate 27: 102-9. Gavet O., Ozon S., Manceau V., Lawler S., Curmi P., and Sobel A. (1998). The stathmin phosphoprotein family: intracellular localization and effects on the microtubule network. J Cell Sci 111: 3333-3346. Giampietro C., Luzzati F., Gambarotta G., Giacobini P., Boda E., Fasolo A., and Perroteau I. (2005). Stathmin expression modulates migratory properties of GN-11 neurons in vitro. Endocrinology 146: 1825-1834. Gonzalez C., Saunders R. D., Casal J., Molina I., Carmena M., Ripoll P., and Glover D. M. (1990). Mutations at the asp locus of Drosophila lead to multiple free centrosomes in syncytial embryos, but restrict centrosome duplication in larval neuroblasts. J Cell Sci 96 (Pt 4): 605-16. Goukassian D., Diez-Juan A., Asahara T., Schratzberger P., Silver M., Murayama T., Isner J. M., and Andres V. (2001). Overexpression of p27(Kip1) by doxycycline-regulated adenoviral vectors inhibits endothelial cell proliferation and migration and impairs angiogenesis. Faseb J 15: 1877-85. Grandchamp B., De Verneuil H., Beaumont C., Chretien S., Walter O., and Nordmann Y. (1987). Tissue-specific expression of porphobilinogen deaminase. Two isoenzymes from a single gene. Eur J Biochem 162: 105-10. Guan X. Y., Fang Y., Sham J., Kwong D., Zhang Y., Liang Q., Li H., Zhou H., and Trent J. (2001). Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer 30: 110. Guan X. Y., Fang Y., Sham J. S., Kwong D. L., Zhang Y., Liang Q., Li H., Zhou H., and Trent J. M. (2000). Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer 29: 110-6. Holmfeldt P., Larsson N., Segerman B., Howell B., Morabito J., Cassimeris L., and Gullberg M. (2001). The catastrophe-promoting activity of ectopic Op18/stathmin is required for disruption of mitotic spindles but not interphase microtubules. Mol Biol Cell 12: 73-83. Hsu H. C., Cheng W., and Lai P. L. (1997). Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res 57: 5179-84. Hsu H. C., Chiou T. J., Chen J. Y., Lee C. S., Lee P. H., and Peng S. Y. (1991). Clonality and clonal evolution of hepatocellular carcinoma with multiple nodules. Hepatology 13: 923-8. Hsu H. C., Jeng Y. M., Mao T. L., Chu J. S., Lai P. L., and Peng S. Y. (2000). Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 157: 763-70. Hsu H. C., Peng S. Y., Lai P. L., Sheu J. C., Chen D. S., Lin L. I., Slagle B. L., and Butel J. S. (1994). Allelotype and loss of heterozygosity of p53 in primary and recurrent hepatocellular carcinomas. A study of 150 patients. Cancer 73: 42-7. Hsu H. C., Sheu J. C., Lin Y. H., Chen D. S., Lee C. S., Hwang L. Y., and Beasley R. P. (1985). Prognostic histologic features of resected small hepatocellular carcinoma (HCC) in Taiwan. A comparison with resected large HCC. Cancer 56: 672-80. Hsu H. C., Tseng H. J., Lai P. L., Lee P. H., and Peng S. Y. (1993). Expression of p53 gene in 184 unifocal hepatocellular carcinomas: association with tumor growth and invasiveness. Cancer Res 53: 4691-4. Hsu H. C., Wu T. T., Wu M. Z., Sheu J. C., Lee C. S., and Chen D. S. (1988). Tumor invasiveness and prognosis in resected hepatocellular carcinoma. Clinical and pathogenetic implications. Cancer 61: 2095-9. Hu R. H., Lee P. H., Yu S. C., Dai H. C., Sheu J. C., Lai M. Y., Hsu H. C., and Chen D. S. (1996). Surgical resection for recurrent hepatocellular carcinoma: prognosis and analysis of risk factors. Surgery 120: 23-9. Huang L. R., and Hsu H. C. (1995). Cloning and expression of CD24 gene in human hepatocellular carcinoma: a potential early tumor marker gene correlates with p53 mutation and tumor differentiation. Cancer Res 55: 4717-21. Hwang Y. H., Choi J. Y., Kim S., Chung E. S., Kim T., Koh S. S., Lee B., Bae S. H., Kim J., and Park Y. M. (2004). Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res 29: 113-121. Iancu C., Mistry S. J., Arkin S., Wallenstein S., and Atweh G. F. (2001). Effects of stathmin inhibition on the mitotic spindle. J Cell Sci 114: 909-916. Jackson A. P., Eastwood H., Bell S. M., Adu J., Toomes C., Carr I. M., Roberts E., Hampshire D. J., Crow Y. J., Mighell A. J., Karbani G., Jafri H., Rashid Y., Mueller R. F., Markham A. F., and Woods C. G. (2002). Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 71: 136-42. Jackson A. P., McHale D. P., Campbell D. A., Jafri H., Rashid Y., Mannan J., Karbani G., Corry P., Levene M. I., Mueller R. F., Markham A. F., Lench N. J., and Woods C. G. (1998). Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am J Hum Genet 63: 541-6. Jamieson C. R., Fryns J. P., Jacobs J., Matthijs G., and Abramowicz M. J. (2000). Primary autosomal recessive microcephaly: MCPH5 maps to 1q25-q32. Am J Hum Genet 67: 1575-7. Jamieson C. R., Govaerts C., and Abramowicz M. J. (1999). Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15. Am J Hum Genet 65: 1465-9. Jin K., Mao X. O., Cottrell B., Schilling B., Xie L., Row R. H., Sun Y., Peel A., Childs J., Gendeh G., Gibson B. W., and Greenberg D. A. (2004). Proteomic and immunochemical characterization of a role for stathmin in adult neurogenesis. FASEB J 18: 287-299. Kawate S., Fukusato T., Ohwada S., Watanuki A., and Morishita Y. (1999). Amplification of c-myc in hepatocellular carcinoma: correlation with clinicopathologic features, proliferative activity and p53 overexpression. Oncology 57: 157-63. Kew M. C. (2002). Epidemiology of hepatocellular carcinoma. Toxicology 181-182: 35-8. Kouprina N., Pavlicek A., Mochida G. H., Solomon G., Gersch W., Yoon Y. H., Collura R., Ruvolo M., Barrett J. C., Woods C. G., Walsh C. A., Jurka J., and Larionov V. (2004). Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion. PLoS Biol 2: E126. Kumar A., Blanton S. H., Babu M., Markandaya M., and Girimaji S. C. (2004). Genetic analysis of primary microcephaly in Indian families: novel ASPM mutations. Clin Genet 66: 341-8. Kumar A., Markandaya M., and Girimaji S. C. (2002). Primary microcephaly: microcephalin and ASPM determine the size of the human brain. J Biosci 27: 629-32. Leal G. F., Roberts E., Silva E. O., Costa S. M., Hampshire D. J., and Woods C. G. (2003). A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q12.2. J Med Genet 40: 540-2. Lee W. C., Jeng L. B., and Chen M. F. (2002). Estimation of prognosis after hepatectomy for hepatocellular carcinoma. Br J Surg 89: 311-6. Leung T. H., Wong N., Lai P. B., Chan A., To K. F., Liew C. T., Lau W. Y., and Johnson P. J. (2002). Identification of four distinct regions of allelic imbalances on chromosome 1 by the combined comparative genomic hybridization and microsatellite analysis on hepatocellular carcinoma. Mod Pathol 15: 1213-20. Liang P., Averboukh L., Keyomarsi K., Sager R., and Pardee A. B. (1992). Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells. Cancer Res 52: 6966-8. Liang P., and Pardee A. B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967-71. Liew C. T., Li H. M., Lo K. W., Leow C. K., Lau W. Y., Hin L. Y., Lim B. K., Lai P. B., Chan J. Y., Wang X. Q., Wu S., and Lee J. C. (1999). Frequent allelic loss on chromosome 9 in hepatocellular carcinoma. Int J Cancer 81: 319-24. Liu S. H., Lin C. Y., Peng S. Y., Jeng Y. M., Pan H. W., Lai P. L., Liu C. L., and Hsu H. C. (2002). Down-regulation of annexin A10 in hepatocellular carcinoma is associated with vascular invasion, early recurrence, and poor prognosis in synergy with p53 mutation. Am J Pathol 160: 1831-7. Masaki T., Shiratori Y., Rengifo W., Igarashi K., Yamagata M., Kurokohchi K., Uchida N., Miyauchi Y., Yoshiji H., Watanabe S., Omata M., and Kuriyama S. (2003). Cyclins and cyclin-dependent kinases: comparative study of hepatocellular carcinoma versus cirrhosis. Hepatology 37: 534-43. Mochida G. H., and Walsh C. A. (2001). Molecular genetics of human microcephaly. Curr Opin Neurol 14: 151-6. Moynihan L., Jackson A. P., Roberts E., Karbani G., Lewis I., Corry P., Turner G., Mueller R. F., Lench N. J., and Woods C. G. (2000). A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34. Am J Hum Genet 66: 724-7. Nagasue N., Uchida M., Makino Y., Takemoto Y., Yamanoi A., Hayashi T., Chang Y. C., Kohno H., Nakamura T., and Yukaya H. (1993). Incidence and factors associated with intrahepatic recurrence following resection of hepatocellular carcinoma. Gastroenterology 105: 488-94. Niethammer P., Bastiaens P., and Karsenti E. (2004). Stathmin-tubulin interaction gradients in motile and mitotic cells. Science 303: 1862-1866. Pan H. W., Ou Y. H., Peng S. Y., Liu S. H., Lai P. L., Lee P. H., Sheu J. C., Chen C. L., and Hsu H. C. (2003). Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98: 119-27. Pattison L., Crow Y. J., Deeble V. J., Jackson A. P., Jafri H., Rashid Y., Roberts E., and Woods C. G. (2000). A fifth locus for primary autosomal recessive microcephaly maps to chromosome 1q31. Am J Hum Genet 67: 1578-80. Peng S. Y., Chen W. J., Lai P. L., Jeng Y. M., Sheu J. C., and Hsu H. C. (2004). High alpha-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: significance of hepatitis virus infection, age, p53 and beta-catenin mutations. Int J Cancer 112: 44-50. Peng S. Y., Chou S. P., and Hsu H. C. (1998). Association of downregulation of cyclin D1 and of overexpression of cyclin E with p53 mutation, high tumor grade and poor prognosis in hepatocellular carcinoma. J Hepatol 29: 281-9. Peng S. Y., Lai P. L., and Hsu H. C. (1993). Amplification of the c-myc gene in human hepatocellular carcinoma: biologic significance. J Formos Med Assoc 92: 866-70. Piao Z., Park C., Park J. H., and Kim H. (1998). Deletion mapping of chromosome 4q in hepatocellular carcinoma. Int J Cancer 79: 356-60. Pichon B., Vankerckhove S., Bourrouillou G., Duprez L., and Abramowicz M. J. (2004). A translocation breakpoint disrupts the ASPM gene in a patient with primary microcephaly. Eur J Hum Genet 12: 419-21. Poon R. T., Fan S. T., Lo C. M., Ng I. O., Liu C. L., Lam C. M., and Wong J. (2001). Improving survival results after resection of hepatocellular carcinoma: a prospective study of 377 patients over 10 years. Ann Surg 234: 63-70. Poon R. T., Fan S. T., Ng I. O., Lo C. M., Liu C. L., and Wong J. (2000). Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer 89: 500-7. Ripoll P., Pimpinelli S., Valdivia M. M., and Avila J. (1985). A cell division mutant of Drosophila with a functionally abnormal spindle. Cell 41: 907-12. Roberts E., Jackson A. P., Carradice A. C., Deeble V. J., Mannan J., Rashid Y., Jafri H., McHale D. P., Markham A. F., Lench N. J., and Woods C. G. (1999). The second locus for autosomal recessive primary microcephaly (MCPH2) maps to chromosome 19q13.1-13.2. Eur J Hum Genet 7: 815-20. Roos G., Brattsand G., Landberg G., Marklund U., and Gullberg M. (1993). Expression of oncoprotein 18 in human leukemias and lymphomas. Leukemia 7: 1538-1546. Sakai K., Nagahara H., Abe K., and Obata H. (1992). Loss of heterozygosity on chromosome 16 in hepatocellular carcinoma. J Gastroenterol Hepatol 7: 288-92. Saunders R. D., Avides M. C., Howard T., Gonzalez C., and Glover D. M. (1997). The Drosophila gene abnormal spindle encodes a novel microtubule-associated protein that associates with the polar regions of the mitotic spindle. J Cell Biol 137: 881-90. Schena M., Shalon D., Davis R. W., and Brown P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-70. Shao J., Li H., Liew C. T., Wu Q., Liang X., and Hou J. (1999). [A preliminary study of loss of heterozygosity on chromosome 1p in primary hepatocellular carcinoma]. Zhonghua Bing Li Xue Za Zhi 28: 28-30. Smela M. E., Currier S. S., Bailey E. A., and Essigmann J. M. (2001). The chemistry and biology of aflatoxin B(1): from mutational spectrometry to carcinogenesis. Carcinogenesis 22: 535-45. Stier H., Fahimi H. D., Van Veldhoven P. P., Mannaerts G. P., Volkl A., and Baumgart E. (1998). Maturation of peroxisomes in differentiating human hepatoblastoma cells (HepG2): possible involvement of the peroxisome proliferator-activated receptor alpha (PPAR alpha). Differentiation 64: 55-66. Takahashi K., Kudo J., Ishibashi H., Hirata Y., and Niho Y. (1993). Frequent loss of heterozygosity on chromosome 22 in hepatocellular carcinoma. Hepatology 17: 794-9. Takahashi T., and Caviness V. S., Jr. (1993). PCNA-binding to DNA at the G1/S transition in proliferating cells of the developing cerebral wall. J Neurocytol 22: 1096-102. Takizawa C. G., and Morgan D. O. (2000). Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol 12: 658-65. Thorgeirsson S. S., and Grisham J. W. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31: 339-46. Tsuda H., Hirohashi S., Shimosato Y., Ino Y., Yoshida T., and Terada M. (1989). Low incidence of point mutation of c-Ki-ras and N-ras oncogenes in human hepatocellular carcinoma. Jpn J Cancer Res 80: 196-9. Tsuda H., Zhang W. D., Shimosato Y., Yokota J., Terada M., Sugimura T., Miyamura T., and Hirohashi S. (1990). Allele loss on chromosome 16 associated with progression of human hepatocellular carcinoma. Proc Natl Acad Sci U S A 87: 6791-4. Velculescu V. E., Zhang L., Vogelstein B., and Kinzler K. W. (1995). Serial analysis of gene expression. Science 270: 484-7. Vincent S., Marty L., and Fort P. (1993). S26 ribosomal protein RNA: an invariant control for gene regulation experiments in eucaryotic cells and tissues. Nucleic Acids Res 21: 1498. Wakefield J. G., Bonaccorsi S., and Gatti M. (2001). The drosophila protein asp is involved in microtubule organization during spindle formation and cytokinesis. J Cell Biol 153: 637-48. Wang X. W., Hussain S. P., Huo T. I., Wu C. G., Forgues M., Hofseth L. J., Brechot C., and Harris C. C. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Toxicology 181-182: 43-7. Watson J. B., and Margulies J. E. (1993). Differential cDNA screening strategies to identify novel stage-specific proteins in the developing mammalian brain. Dev Neurosci 15: 77-86. Whitfield M. L., Sherlock G., Saldanha A. J., Murray J. I., Ball C. A., Alexander K. E., Matese J. C., Perou C. M., Hurt M. M., Brown P. O., and Botstein D. (2002). Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13: 1977-2000. Woods C. G., Bond J., and Enard W. (2005). Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet 76: 717-28. Yuen M. F., Wu P. C., Lai V. C., Lau J. Y., and Lai C. L. (2001). Expression of c-Myc, c-Fos, and c-jun in hepatocellular carcinoma. Cancer 91: 106-12. Zhang J. (2003). Evolution of the human ASPM gene, a major determinant of brain size. Genetics 165: 2063-70. Zhang X., Xu H. J., Murakami Y., Sachse R., Yashima K., Hirohashi S., Hu S. X., Benedict W. F., and Sekiya T. (1994). Deletions of chromosome 13q, mutations in Retinoblastoma 1, and retinoblastoma protein state in human hepatocellular carcinoma. Cancer Res 54: 4177-82. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36657 | - |
dc.description.abstract | 肝細胞癌是一種世界性常見的惡性腫瘤,在台灣更是男性癌症死亡原因的第一位。肝細胞癌通常發生在長期的慢性肝臟疾病之後,因為肝細胞反覆的壞死性發炎反應造成伴隨著基因變異的細胞再生與不正常的DNA複製。這些不正常的基因變異包含有致癌基因與腫瘤抑制基因的差異性表現。為了更進一步瞭解肝細胞癌腫瘤發生與腫瘤進行過程的分子機制,分析並且辨別差異性表現的基因是非常重要的步驟。基因分示法是一種用來辨別差異性表現基因的方法,此方法有經由使用簡單的反轉錄聚合酶連鎖反應以及可同時比較多組檢體來減少個別差異的優點。利用基因分示法,我們發現人類ASPM基因在肝細胞癌中常會有過量的表現。
人類ASPM基因 (abnormal spindle-like microcephaly associated) 位於一種造成胎兒腦部發育缺陷的基因遺傳疾病MCPH (autosomal recessive primary microcephaly)的第五號染色體基因座位置上。ASPM基因的同型合子突變是造成MCPH最常見的原因,會造成病患的小腦症且心智發育遲緩。人類ASPM是一個很大的蛋白質,包括有一個預測性的微小管結合位置、一個calponin-homology區域、74個重複的calmodulin-binding isolucine-glutamine區域以及最後的carboxy端結尾。比較各物種生物間的ASPM同源基因,可發現其蛋白質結構帶有很高度的保留性,也因此各物種間的ASPM同源基因可能有相同的生物功能。果蠅的ASPM同源基因Abnormal spindle (Asp)蛋白質座落在中央紡綞體微小管的負端,對於微小管聚集在紡綞體極端的功能有重大的影響。因此果蠅Asp蛋白質的突變會造成不正常的紡綞體組織而使得果蠅在發育的過程於幼蟲至蛹期間發生死亡。此外,老鼠的ASPM同源基因Aspm,則被發現會於胎兒時期高度的表現在有旺盛神經發育的大腦神經皮質區,而在出生後由於神經發育停止而迅速減少表現。綜合這些研究,我們認為ASPM蛋白質可能是一個細胞分裂時與紡綞體相關且與大腦發育相關的蛋白質。 在本篇研究中,我們發現在252個原發性單一性肝細胞癌腫瘤病患中,有136人有ASPM基因的過量表現 (54%)。同時在數種常見的人類惡性腫瘤中也有過量的表現,但是良性腫瘤則不會表現或表現量很低。ASPM基因同時也表現在多個胎兒器官與數種癌症細胞株之中,但在成人器官中則表現量很低。經由臨床病理學分析,我們發現肝細胞癌中ASPM基因的過量表現會與病人血清中高於200ng/ml的甲型胎兒蛋白、分化差與高分期的肝細胞癌腫瘤相關,P值都小於0.0001。有ASPM過量表現的肝細胞癌病人,常是分化較差且伴隨著血管的侵犯,而且病患的手術後十年存活率較低,P值等於0.00001。我們使用nocodazole藥物來同步化細胞進行,進而檢測細胞週期,發現ASPM基因在細胞週期進行中會有不同的表現。當細胞從M期走向G0/G1期時,ASPM表現量減少但在S期則逐漸增加,於M期表現量最高。在老鼠的肝臟部分切除及肝臟再生實驗中,發現在肝細胞再生的第48至72小時(DNA複製期間),老鼠的Aspm基因表現量會升高。另一方面,在使用全反式retinoic acid處理造成分化的NT2細胞與不繼代處理造成分化的HepG2細胞中,ASPM基因的表現量會減少。在免疫螢光染色方面,使用合成peptide製造的兔子多株抗體,我們發現人類ASPM蛋白質染色於細胞核內,且在細胞分裂時聚集於紡綞體的極端。這些結果顯示ASPM基因與細胞分裂,細胞增殖以及細胞分化有著相關性。藉由siRNA降低基因表現的系統,我們發現減少ASPM表現的細胞株比起對照組細胞,在soft agar中會降低細胞的非附著性生長能力,且在膠原蛋白膠(3-dimensional type I collagen gel)中細胞的偽足會減少。ASPM表現降低的細胞同時也有p27表現增多與stathmin表現減少的現象,此二個蛋白質都與細胞活動性相關。這些結果顯示減少ASPM的基因表現會降低腫瘤細胞的生長與侵犯,而這樣的腫瘤細胞侵犯降低可能是經由p27的增加與stathmin的減少來調控。這些結果還需要更進一步的實驗來加以證明。 總而言之,我們的研究結果顯示人類ASPM基因參與了細胞的DNA複製、細胞分裂的週期、以及細胞的增殖與分化。而且肝細胞癌病患中ASPM基因的過量表現是很常見的現象。ASPM基因的過量表現在腫瘤的細胞增殖、細胞分化以及腫瘤侵犯與轉移扮演著重要的角色。另外,我們也認為人類ASPM基因的過量表現可以作為一個有效的手術後腫瘤早期再發及預後較差的預測因子。 | zh_TW |
dc.description.abstract | Hepatocellular carcinoma (HCC) is a common malignancy worldwide. In Taiwan, it is the leading cause of cancer death in man. HCC usually occurs after a prolonged course of chronic liver disease with repeated necroinflammatory liver cell followed by cell regeneration, accompanied by DNA replication and accumulation of genetic and epigenetic alternations including oncogenes and tumor suppressor genes. To identify differentially expressed genes is an important step to better understand the molecular mechanisms in the tumorigenesis and tumor progression of HCC. Differential display (DD) is one of the methods to verify differentially expressed genes with advantages of using the simple RT-PCR and comparing multiple samples of different characters at the same time to minimize the individual variation. By differential display method, we identified the human ASPM gene that was frequently overexpresses in HCC.
The human ASPM (abnormal spindle-like microcephaly associated) gene is at the 5th locus of MCPH (autosomal recessive primary microcephaly), a genetic disorder of fetal brain growth. The homozygous mutations of ASPM gene are the most common cause of MCPH and lead to microcephaly and mental retardation. The human ASPM is a large protein containing a putative amino terminal microtubule-binding region, a calponin-homology domain, 74 repeated calmodulin-binding isolucine-glutamine (IQ) domains and a carboxy terminal region. Comparisons of the ASPM homologue proteins show high conservations among the species and are therefore proposed to share biochemical functions. The Drosophila homologue abnormal spindle (Asp) protein localizes to the minus ends of central spindle microtubules and is required for the aggregation of microtubules into focused spindle poles. Therefore, mutations of Asp cause abnormal spindle structure and lead to larval-pupal lethality of Drosophila. Moreover, mouse homologue of human ASPM, Aspm, is highly expressed in embryonic days in the neuroepithelium at sites of active neurogenesis and decreased postnatally after the completion of neurogenesis. Taking these researches together, we suggest that ASPM protein is proposed to be a mitotic spindle related and brain growth required protein. In our study, we found a frequent overexpression of human ASPM gene in 136 out of 252 unifocal primary HCCs (54%), and in several common human malignancies but not in benign tumors. ASPM gene was also expressed in multiple fetal tissues and several cancer cell lines, but not adult tissues. By clinicopathological analysis, we showed that the overexpression of ASPM gene in HCC was associated with high AFP level (>200 ng/ml), high-grade, high-stage tumor HCC, all Ps<0.0001. The patients of HCCs with ASPM overexpression, which had poor differentiated tumors and more frequent vascular invasion, had poor prognosis and lower 10-years survival rate, P=0.00001. During the cell cycle progression after release from nocodazole block, ASPM gene showed differential expression. ASPM mRNA levels decreased from M phase to G0/G1 phase, but increased dramatically upon the entry into the S phase, and then reached the peak at M phase. The mouse Aspm gene was upregulated during the period of DNA synthesis in liver regeneration after partial hepatectomy. On the other hand, human ASPM mRNA level decreased after differentiation of NT2 cells induced by prolonged all trans-retinoic acid treatment and HepG2 cells induced by prolonged cultivation without passage. By immunofluorescence staining using polyclonal anti-ASPM antibody against synthetic peptide, we showed that ASPM was located in nuclei, with enrichment at the mitotic spindle poles during mitosis. These results suggest that ASPM gene is involved in cell mitosis, proliferation and differentiation. With siRNA knockdown system, we found that ASPM stable knockdown cells showed reduced anchorage-independent colony formation in soft agar assay and reduced tumor cell processes in 3D gel culture compared with control cells. ASPM knockdown cells also showed increased p27 and decreased stathmin, both are related to cell motility. These results indicate that decreased ASPM gene expression would lead to reduce tumor cell growth and tumor cell invasion in vitro, probably via the upregulation of p27 and downregulation of stathmin. Further studies are warranted for further clarification. In conclusion, our results indicate that human ASPM gene is involved in the DNA synthesis, cell cycle progression, and cell proliferation and differentiation, and the overexpression is a common event in HCC. ASPM overexpression plays important role in the tumor cell proliferation, differentiation, and invasion/metastasis, probably via the downregulation of p27 and upregulation of stathmin. It is also concluded that human ASPM overexpression is a useful predictive factor for early tumor recurrence after tumor resection, and a prognostic factor associated with poor prognosis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:09:46Z (GMT). No. of bitstreams: 1 ntu-94-R92444001-1.pdf: 3405982 bytes, checksum: c362dc040eccc39c5f1bf07586910c0d (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract IV A. INTRODUCTION 1 B. PATIENTS AND METHODS 8 C. RESULTS 16 D. DISCUSSION 21 E. REFERENCES 28 F. TABLES 37 G. FIGURES 43 | |
dc.language.iso | en | |
dc.title | 肝細胞癌中ASPM基因之臨床病理與功能研究 | zh_TW |
dc.title | Clinicopathological and Functional study of ASPM gene (abnormal spindle-like microcephaly associated) in Hepatocellular Carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂勝春,陳瑞華,李玉梅 | |
dc.subject.keyword | 肝細胞癌,不正常紡綞體,腫瘤再發,腫瘤進程, | zh_TW |
dc.subject.keyword | hepatocellular carcinoma,HCC,ASPM,abnormal spindle,tumor recurrence,tumor progression,tumor invasion,LAP18,stathmin, | en |
dc.relation.page | 63 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-21 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 病理學研究所 | zh_TW |
顯示於系所單位: | 病理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 3.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。