Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36646
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳富春(Fu-Chun Wu)
dc.contributor.authorChih-Yi Fangen
dc.contributor.author房志懿zh_TW
dc.date.accessioned2021-06-13T08:09:18Z-
dc.date.available2005-07-27
dc.date.copyright2005-07-27
dc.date.issued2005
dc.date.submitted2005-07-21
dc.identifier.citation1. 工研院,「因應聯合國氣候變化綱要公約策略規劃及實務推動」,行政院環保署委託研究計畫報告,2004年。
2. 中國農村復興聯合委員會,「臺灣之水稻灌溉」,1970年。
3. 甘俊二、陳鈞華、黃昱舜,「水稻深水灌溉可行性之先期研究」,農業工程學報,48(1),pp.10-23,2002年。
4. 行政院農委會,「水稻田對地下水補注功能評估分級」,水稻田生態環境保護規劃及示範成果報告,1996年。
5. 行政院經濟部,「全國能源會議結論報告」,1998年。
6. 行政院環境保護署,「中華民國環境保護統計年報」,2003年。
7. 行政院環境保護署環保標章資訊站http://greenmark.epa.gov.tw/main4.asp
8. 李慧梅,「木柵垃圾焚化廠二氧化碳排放量」,台北市木柵垃圾焚化廠委外研究報告,2001年。
9. 吳富春、沈易徵,「水田微氣候模式之建立與應用」,農業工程學報,48(1),pp.10-23,2002年。
10. 吳富春、楊國鑫,「水田土地利用型態對區域性微氣候之影響評估」,農業工程學報,49(2),pp.53-68,2003年。
11. 吳富春、李長穎,「水田生態環境微氣候之量測與數值模擬」,農業工程學報,50(2),pp.64-84,2004年。
12. 氣候變化綱要公約全球資訊網, http://sd.erl.itri.org.tw/fccc/
13. 黃宗煌、李秉正、徐世勳、林師模、劉錦龍,「溫室氣體減量成本效益分析-TAIGEM 模型建構及減量策略之經濟評估」,行政院環保署研究計畫報告,1999年。
14. 楊居成,「控制生長環境下測定一、二期作稻光合作用及光、暗呼吸作用」,中興理工學報,17,pp.175-190,1980年。
15. 楊居成,「水稻光合作用及呼吸作用之研究-Ⅰ.第一、二期作水稻之生長分析」,中興理工學報,19,pp.69-90,1982年。
16. 楊居成,「水稻光合作用及呼吸作用之研究-Ⅲ.第一、二期作水稻二氧化碳交換率」,中興理工學報,20,pp.73-79,1983年。
17. 臺灣電力公司,「電價表」,pp.4,2005年。
18. 臺灣電力公司,「93年公務統計」,2005年。
19. Anten, N. P. R., Schieving, F. and Werger, M. J. A., “Patterns of Light and Nitrogen Distribution in Relation to Whole Canopy Carbon Gain in C3 and C4 Mono- and Dicotyledonous Species”, Oecologia, 101, pp.504-513, 1995.
20. Anten, N. P. R., “Modelling Canopy Photosynthesis Using Parameters Determined from Simple Non-Destructive Measurements”, Ecological Research, 12, pp.77-88, 1997.
21. Arya, S. P., Introduction to Micrometeorology, International Geophysics Series, Academic Press, San Diego, Vol. 79, 420pp., 2001.
22. Badger, M. R., “Photosynthetic Oxygen Exchange”, Annu. Rev. Plant Phys., 36, pp.27-53, 1985.
23. Baldocchi, D. and Harley, P., “Scaling Carbon Dioxide and Water Vapor Exchange from Leaf to Canopy in a Deciduous Forest: Model Testing and Application”, Plant Cell Environ., 18, pp.1157-1173, 1995.
24. Ball, J. T., Woodrow, I. E. and Berry, J. A., “A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions”, In: Progress in Photosynthesis Research, v.4, Biggins J. ed., M. Nijhoff, Dordrecht, Netherlands, pp.221-224, 1987.
25. Ball, J. T., “An Analysis of Stomatal Conductance”, Ph.D. Thesis, Stanford University, CA, pp. 89, 1988.
26. Beadle, C. L., Long, S. P., Imbamba, S. K., Hall, D. O. and Olembo, R. J., Photosynthesis in Relation to Plant Production in Terrestrial Environments, Tycooly publishing limited, Oxford, England, 1985.
27. Buchmann, N. and Schulze, E.-D., “Net CO2 and H2O Fluxes of Terrestrial Ecosystems”, Glob. Biogeochem. Cycles, 13, pp.751-760, 1999.
28. Collatz, G. J., Berry, J. A., Farquhar, G. D. and Pierce, J., “The Relationship between the Rubisco Reaction Mechanism and Models of Photosynthesis”, Plant Cell Environ., 13, pp.219-225, 1990.
29. Collatz, G. J., Ball, J. T., Grivet, C. and Berry, J. A., “Physiological and Environmental Regulation of Stomatal Conductance, Photosynthesis and Transpiration: a Model that Includes a Laminar Boundary Layer”, Agric. For. Meteorol., 54, pp.107-136, 1991.
30. Cowan, I. R., “Mass, Heat and Momentum Exchange between Stands of Plants and their Atmospheric Environment”, Q. J. R. Meteorol. Soc., 94, pp.523-544, 1968.
31. Deardorff, J. W., “Efficient Prediction of Ground Surface Temperature and Moisture with Inclusion of a Layer of Vegetation”, J. Geophys. Res., 83(C4), pp.1889-1903, 1978.
32. de Pury, D. G. G. and Farquhar, G. D., “Simple Scaling of Photosynthesis from Leaves to Canopies without the Errors of Big-Leaf Models”, Plant Cell Environ., 20, pp.537-557, 1997.
33. Dickinson, R. E., Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model, NCAR Tech. Note, NCAR, TN275+STR, 1986.
34. Dyer, A.J., “A Review of Flux-Profile Relationships”, Boundary-Layer Meteorol., 7, pp.363-372, 1974.
35. Evans, J. R., “Nitrogen and Photosynthesis in the Flag Leaf of Wheat (Triticum aestivum L.)”, Plant Physiology, 72, pp.297-302, 1983.
36. Evans, J. R., “The Dependence of Quantum Yeild on Wavelength and Growth Irradiance”, Aust. J. Plant Physiol., 14, pp.69-179, 1987.
37. Evans, J. R., “Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants”, Oecologia, 78, pp.9-19, 1989.
38. Farquhar, G. D., von Caemmerer, S. and Berry, J. A., “A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 Species”, Planta, 149, pp.78-90, 1980.
39. Farquhar, G.D. and von Caemmerer, S., “Modeling Photosynthetic Response to Environmental Conditions”, In: Encyclopedia of Plant Physiology, v.12, Lange O. L. et al. eds., Springer-Verlag, Berlin., pp.549-587, 1982.
40. Gates, D.M., Biophysical Ecology, Springer, New York, 611pp., 1980.
41. Goudriaan, J., Crop Micrometeorology: A Simulation Study, Center for Agricultural Publishing and Documentation, Wageningen, 249pp., 1977.
42. Guyot, G., Physics of the Environment and Climate, John Wiley & Sons, 632pp., 1998.
43. Hirose, T. and Werger, M. J. A., “Maximising Daily Canopy Photosynthesis with Respect to the Leaf Nitrogen Allocation Pattern in the Canopy”, Oecologia, 72, pp.520-526, 1987.
44. INC/FCCC, KYOTO Protocol to the United Nations Framework Convention on Climate Change, 3rd Session of the Conference of the Parties (COP3), Kyoto, Japan, 1997.
45. Incropera, F. P. and DeWitt, D. P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 967pp., 2002.
46. Intergovemmental Negotiating Committee for a Framework Convention on Climate Change (INC/FCCC), United Nations Framework Convention on Climate Change (UNFCCC), New York, 1992.
47. Intergovemmental Panel on Climate Change (IPCC), IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 1-3, 1996.
48. IPCC, Climate Change: The Scientific Basis, IPCC 3rd Assessment Report, 2001.
49. IPCC website, http://www.ipcc.ch/
50. Iqbal, M., An Introduction to Solar Radiation, Academic Press, Toronto, 1983.
51. Kondo, J. and Watanabe, T., “Studies on the Bulk Transfer Coefficients over a Vegetated Surface with a Multilayer Energy Budget Model”, J. Atmos. Sci., 49, pp.2183-2199, 1992.
52. Langholz, J. and Turner, K., You Can Prevent Global Warming (and Save Money!): 51 Easy Ways, Andrews McMeel Publishing, 365pp., 2003.
53. Lee, T. J., The Impact of Vegetation on the Atmospheric Boundary Layer and Convective Storms, Ph.D. Dissertation, Colorado State University, 137pp., 1992.
54. Mehlenbacher, L.A. and Whitfield, D.W.A., “Modeling Thermal Eddy Diffusivity at Canopy Height”, Boundary-Layer Meteorol., 12, pp.153-170, 1977.
55. Murray, F. W., “On the Computation of Saturation Vapor Pressure”, J. Appl. Meteorol., 6, pp.203-204, 1968.
56. Mihailovic’, D. T. and Ruml, M., “Design of a Land-Air Parameterization Scheme (LAPS) for Modelling Boundary Layer surface Processes”, Meteorol. Atmos. Phys., 58, pp.65-81, 1996.
57. Monteith, J. L., “Evaporation and Environment”, Symp. Soc. Exp. Biol., 19, pp.205-234, 1965.
58. Monteith, J. L., Principles of Environmental Physics, Edward Arnold Ltd., 242pp., 1973.
59. Murphy, C.E. and Knoerr, K.R., “Modeling the Energy Balance Processes of Natural Ecosystems”, Eastern Deciduous Forest Biome-IBP Res. Rep. 72-10, Oak Ridge Natioinal Laboratory, Oak Ridge, TN/Duke University, Durham, 135 pp., 1972.
60. Norman, J. M., “Interfacing Leaf and Canopy Light Interception Models” In: Predicting Photosynthesis for Ecosystem Models, v.2, Hesketh, J. D. and Jones, J. W. eds., CRC Press, Boca Raton, Fla., pp.49-67, 1980.
61. Penman, H. L., “Natural Evaporation from Open Water, Bare Soil and Grass”, Proc. R. Soc. Lond., Ser., A193, pp.120-145, 1948.
62. Richardson, L. F., Weather Prediction by Numerical Process, Cambridge University Press, 1922. (Reprinted by Dover Publications, New York, 1965, with a New Introduction by Sydney Chapman.)
63. Ross, J., “Relative Transfer in Plant Communities”, In: Vegetation and the Atmosphere I, Monteith J. L. ed., Academic Press, New York, pp.13-55, 1975.
64. Sellers, P. J., Mintz, Y., Sud, Y. C. and Dalcher A., “A Simple Biosphere Model (SiB) for Use with General Circulation Models”, J. Atmos. Sci., 43, pp.505-531, 1986.
65. Sellers, P.J., Berry, J. A., Collatz, G. J., Field, C. B. and Hall, F. G., “Canopy Reflectance, Photosynthesis, and Transpiration. Ⅲ. A Reanalysis Using Improved Leaf Models and a New Canopy Integration Scheme”, Remote Sens. Environ., 42, pp.187-216, 1992.
66. Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo G. D. and Bounoua L., “A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMs. Part 1: Model Formulation”, J. Climate., 9, pp.676-705, 1996.
67. Shuttleworth, W. J., and Wallace, J. S., “Evaporation from Sparse Crops - an Energy Combination Theory”, Q. J. R. Meteorol. Soc., 111, pp.839-855, 1985.
68. Sinclair, T. R., Murphy, C. E. and Knoerr, K. E., “Development and Evaluation of Simplified Models for Simulating Canopy Photosynthesis and Transpiration”, J. Appl. Ecol., 13, pp.813-829, 1976.
69. Styles, J. M., Raupach, M. R., Farquhar, G. D., Kolle, O., Lawton, K. A., Brand, W. A., Werner, R. A., Jordan, A., Schulze, E.-D., Shibistova, O. and Lloyd, J., “Soil and Canopy CO2, 13CO2, H2O and Sensible Heat Flux Partitions in a Forest Canopy Inferred from Concentration Measurements”, Tellus, 54 (B5), pp.655-676, 2002.
70. UNFCCC website, http://unfccc.int/2860.php
71. van Genuchten, M. T., “A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils”, Soil Sci. Soc. Amer. J., 44, pp.892-898, 1980.
72. von Caemmerer, S., Biochemical Models of Leaf Photosynthesis, CSIRO Pub., Collingwood, 165pp., 2000.
73. Waggoner, P.E. and Reifsnyder, W. E., “Simulation of the Temperature, Humidity and Evaporation Profiles in a Leaf Canopy”, J. Appl. Meteorol., 7, pp.400-409, 1968.
74. Wang, Y. P. and Jarvis, P. G., ”Description and Validation of an Array Model - MAESTRO”, Agric. For. Meteorol., 51, pp.257-280, 1990.
75. Watanabe, N., Evans, J. R. and Chow, W. S., “Changes in the Photosynthesis Properties of Australian Wheat Cultivars over the Last Century”, Aust. J. Plant Physiol., 21, pp.169-183, 1994.
76. World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI), The Greenhouse Gas (GHG) Protocol- A Corporate Accounting and Reporting Standard and Guidance, 2nd Edition, 2003.
77. Wu, J., “Modeling the Energy Exchange Processes between Plant Communities and Environment”, Eco. Model., 51, pp.233-250, 1990.
78. Wu, J., Liu, Y., “Effects of Leaf Area Profiles and Canopy Stratification on Simulated Energy Fluxes: the Problem of Vertical Spatial Scale”, Eco. Model., 134, pp.283-297, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36646-
dc.description.abstract本研究探討水稻田之生態功能,量化其調節微氣候與吸收二氧化碳之效果。本研究首先建立垂直一維多層微氣候模式,計算水稻與大氣、地表土壤之間能量、質量及動量傳輸,模式經由實測資料驗證後,應用於水稻田之熱流模擬,並利用模擬結果評估水稻田調節微氣候之效果,並換算水稻田可節省電量與間接減少之發電二氧化碳排放量,模擬結果顯示關渡地區一公頃水稻田一日之節電量約為21,400度,可節省約58,500元電費。本研究並建立兩種不同之光合作用模式,即大葉模式與光照-陰影模式,比較兩種不同模式之模擬結果,結果顯示光照-陰影模式模擬所得之二氧化碳吸收率有較高之精確度。利用光合作用模式模擬結果與水稻各生長期之光合作用速率變化可推估水稻全生育期之二氧化碳總吸收量,評估水稻田之二氧化碳吸收量對我國二氧化碳減量目標之貢獻,並以各種車輛之二氧化碳排放量量化水稻田吸收二氧化碳效果。分析結果發現關渡地區374.61公頃水稻田之二氧化碳吸收量對我國2003年二氧化碳總排放量之減量貢獻為0.1%,亦為關渡附近台北市北投焚化廠之2003年二氧化碳減量目標之78%。zh_TW
dc.description.abstractThis study investigates the effects of paddy fields on microclimate and assimilation of carbon dioxide. A vertical one-dimensional multilayer microclimate model is developed to simulate the mass, energy, and momentum transfer between plant, soil, and atmosphere. After verification with field data, the model is applied to evaluate the benefit of paddy fields on regulation of region microclimate, saving of electronic power and reduction of carbon dioxide emission. The result shows that the daily electronic power saving per hectare paddy field in Guan-Du is about 21,400 degrees, and the power costs 58,500NTD. Two different photosynthesis models, namely, the big-leaf model and sun/shade model, are also developed to estimate the assimilation rate of carbon dioxide. According to the simulation results, it is found that the sun/shade model has better accuracy. Integrating the simulated assimilation rate with the variation of photosynthesis rates at different growth stages, the total amount of carbon dioxide assimilation during the whole growth period can be obtained. The carbon dioxide emissions from different types of vehicles and the carbon dioxide reduction goals are used to assess the assimilation effects of paddy fields. It is found that the daily carbon dioxide assimilation per hectare of Guan-Du paddy field can achieve 0.1% contribution of total carbon dioxide reduction goal in Taiwan, or 78% contribution in Bei-Tou incinerator in 2003.en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:09:18Z (GMT). No. of bitstreams: 1
ntu-94-R92622012-1.pdf: 7147963 bytes, checksum: d2796704a438fe2a26742e68fe9a560b (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VIII
符號表 IX
第一章 緒論 1-1
1.1 前言 1-1
1.2 文獻回顧 1-2
1.3 研究目的 1-6
第二章 模式理論 2-1
2.1 垂直一維微氣候模式 2-1
2.2 光合作用模式 2-18
2.2.1 大葉模式 2-21
2.2.2 光照-陰影模式 2-29
2.2.3 光合作用氧氣淨排放量 2-40
第三章 田區資料實測 3-1
3.1 研究區域 3-1
3.2 儀器設備 3-2
3.3 實測資料 3-7
3.3.1 累積葉面積指數 3-7
3.3.2 日輻射量 3-7
3.3.3 風速及風向 3-8
3.3.4 溫度及濕度 3-10
3.3.5 二氧化碳濃度 3-14
第四章 模式結果驗證 4-1
4.1 微氣候模式驗證 4-1
4.1.1 雲林地區結果驗證 4-1
4.1.2 關渡地區結果驗證 4-2
4.1.3 兩地模擬結果之比較與討論 4-5
4.2 光合作用模式驗證與比較 4-6
第五章 水稻田之生態功能評估 5-1
5.1 水稻田調節微氣候之功效評估 5-1
5.2 水稻田吸收二氧化碳之功效評估 5-7
5.2.1 水稻田之二氧化碳吸收量 5-9
5.2.2 生活化之案例比較-各種車輛之二氧化碳排放量 5-12
5.2.3 對二氧化碳減量之貢獻 5-14
5.2.4水稻田釋放氧氣之經濟效益 5-17
第六章 結論與建議 6-1
6.1 結論 6-1
6.2 建議 6-2
參考文獻 7-1
dc.language.isozh-TW
dc.subject二氧化碳zh_TW
dc.subject水稻田zh_TW
dc.subject微氣候zh_TW
dc.subject光合作用zh_TW
dc.subjectpaddy fieldsen
dc.subjectcarbon dioxideen
dc.subjectphotosynthesisen
dc.subjectmicroclimateen
dc.title水稻田區微氣候與光合作用模式之研究zh_TW
dc.titleInvestigation of Microclimate and Photosynthesis Models for Paddy Fieldsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭政宗(Jenq-Tzong Shiau),譚智宏,謝正義(Cheng-I Hsieh)
dc.subject.keyword水稻田,微氣候,光合作用,二氧化碳,zh_TW
dc.subject.keywordpaddy fields,microclimate,photosynthesis,carbon dioxide,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2005-07-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
6.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved