請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36627完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫啟光(Chi-Kuang Sun) | |
| dc.contributor.author | Li-Jin Chen | en |
| dc.contributor.author | 陳李晉 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:08:27Z | - |
| dc.date.available | 2008-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-21 | |
| dc.identifier.citation | [1.1] B. Senitzky, A. A. Oliner, “Submillimeter waves – a transition region”, in Proceedings of the Symposium on Submillimeter Waves, ed. by J. Fox (Polytechnic Press of the Polytechnic Institute of Brooklyn, New York, 1970), Vol. 20
[1.2] D. R. Grischkowsky and D. Mittleman, “Introduction”, in Sensing with Terahertz Radiation, ed. by D. Mittleman (Springer, Berlin, 2003). [1.3] K. H. Yang, P. L. Richards, Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3”, Appl. Phys. Lett., Vol. 19, pp.320-323, 1971. [1.4] Y. R. Shen, “Far-infrared generation by optical mixing”, Proc. Quantum Electron., Vol. 4, pp.207-232, 1976. [1.5] G. Mourou, C. V. Stancampiano, D. Blimenthal, “Picosecond microwave pulse generation”, Appl. Phys. Lett., Vol. 38, pp.470-472, 1981. [1.6] D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconductive Hertzian dipoles”, Appl. Phys. Lett., Vol. 45, pp.284-286, 1984. [1.7] D. H. Auston, “Subpicosecond electro-optic shockwaves”, Appl. Phys. Lett., Vol. 43, pp.713-715, 1983. [1.8] B. B. Hu, X.-C. Zhang, D. H. Auston, P. R. Smith, “Free-space radiation from electro-optic crystals”, Appl. Phys. Lett., Vol. 56, pp.506-508, 1990. [1.9] J.-W. Shi, S.-W. Chu, M.-C. Tien, C.-K. Sun, Y.-J. Chiu, and J. E. Bowers, “Edge-coupled membrane terahertz photonic transmitters based on metal–semiconductor–metal traveling-wave photodetectors”, Appl. Phys. Lett. Vol. 81, pp.5108-5110, 2002. [1.10] M.-C. Tien, H.-H. Chang, J.-Y. Lu, L.-J. Chen, S.-Y. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Device saturation behavior of submillimeter-wave membrane photonic transmitters”, IEEE Photon. Technol. Lett., Vol. 16, pp.873-875, 2004. [1.11] E. R. Brown, F. W. Smith, K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photo-conductors”, J. Appl. Phys., Vol. 73, pp.1480-1484, 1993. [1.12] E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs”, Appl. Phys. Lett. Vol. 66, pp.285-287, 1995. [1.13] K. A. Mclntosh, , E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. Vol. 69, pp.3632-3634, 1996. [1.14] S. Matsuura, G. A. Blake, R. A. Wyss, J. C. Pearson, C. Kadow, A. W. Jackson, and A. C. Gossard, “A traveling-wave THz photomixer based on angle-tuned phase matching,” Appl. Phys. Lett. Vol. 71, pp.2872-2874, 1999. [1.15] D. H. Auston, K. P. Cheung, “Coherent time-domain far-infrared spectroscopy”, J. Opt. Soc. Am. B, Vol. 2, pp.606-612, 1985. [1.16] K. P. Cheung, D. H. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses”, Phys. Rev. Lett., Vol. 55, pp.2152-2155, 1985. [1.17] K. P. Cheung, D. H. Auston, “A novel technique for measuring far-infrared absorption and dispersion”, Infrared Phys., Vol. 26, pp. 23-27, 1986 [1.18] D. E. Cooper, “Picosecond optoelectronic measurement of microstrip dispersion”, Appl. Phys. Lett., Vol. 47, pp. 33-35, 1985. [1.19] M. Tani, S. Matsuura, and K. Sakai, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs”, Appl. Opt., Vol. 36, pp.7853-7859 , 1997 [1.20] M. Tani, M. Herrmann, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging”, Meas. Sci. Technol. Vol. 13, pp. 1739-1745, 2002. [1.21] Q. Wu and X. C. Zhang, “Free space electrooptic samplingof terahertz beams”, Appl. Phys. Lett. Vol. 67, pp. 3523-3525, 1995 [1.22] A. Nahata, D. H. Auston, T. F. Heinz, and C. J. Wu, “Free-space electro-optic detec-. tion of continuous-wave terahertz radiation”, Appl. Phys. Lett. Vol. 68, pp. 150-152, 1996. [1.23] K. D. Möller and W. G. Rothshild, Far-infrared Spectroscopy (Wiley, New York 1971). [1.24] M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation”, Meas. Sci. Technol. Vol. 13, pp. 1727-1738, 2002. [1.25] Y. Q. Deng, R. Kersting, V. Roytburd, J. Z. Xu, R. Ascazubi, K. Liu, X. C. Zhang, and M. S. Shur, “Spectrum determination of terahertz sources using Fabry-Perot interferometer and bolometer detector”, Int. J. Infra. Milli. Waves, Vol. 25, pp. 215-228, 2004. [1.26] H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber”, Appl. Phys. Lett., Vol. 80, pp. 2634−2636, 2002 [1.27] R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys., Vol. 88, pp. 4449-4451, 2000 [1.28] S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett., Vol. 76, pp. 1987-1989, 2000 [1.29] M. Goto, A. Quema, H. Takahashi, S. Ono, N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys., Vol. 43, L317-L319, 2004 [1.30] K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature, Vol. 432, pp. 376-379, 2004 [1.31] T.-I. Jeon, J. Zhang and D. Grischkowsky, 'THz Sommerfeld wave propagation on a single metal wire', Appl. Phys. Lett., Vol. 86, 161904-1-3, 2005 [2.1] A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett., Vol. 64, pp.137-139, 1994. [2.2] A. S. Weling and D. H. Auston, 'Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space,' J. Opt. Soc. Am. B, Vol. 13, pp.2783-2791, 1996. [2.3] E. B. Treacy, ‘‘Optical pulse compression with diffraction gratings,’’ IEEE J. Quantum Electron., Vol. QE-5, pp.454–458, 1969. [2.4] E. P. Ippen and C. V. Shank, ‘‘Techniques for measurement,’’ in Ultrashort Light Pulses, ed. by S. L. Shapiro, (Springer-Verlag, New York, 1977), pp. 90–92. [2.5] Y. J. Chiu, S. B. Fleischer, and J. E. Bowers, “High-speed low-temperature-grown GaAs p-i-n traveling-wave photodetector,” IEEE Photon. Techno. Lett. vol. 10, pp.1012-1014, 1998. [2.6] J.-W. Shi, K.-G. Gan, Y.-J. Chiu, Y.-H. Chen, C.-K. Sun, Y.-J. Yang, and J. E. Bowers, “Metal-semiconductor-metal traveling-wave photodetectors,” IEEE Photon. Techno. Lett. vol. 13, pp.623-625, 2001. [2.7] Y. J. Chiu, S. B. Fleischer, J. E. Bowers, A. C. Gossard, and U. K. Mishra, “High-power, high-speed, low-temperature-grown GaAs p-i-n traveling-wave photodetector,” Conference on Lasers and Electro-Optics, OSA Technical Digest, San Francisco, CA, pp.501-502, 1998. [2.8] J.-W. Shi, K.-G. Gang, Y.-J. Chiu, J. E. Bowers, and C.-K. Sun, “High power performance of ultrahigh bandwidth MSMTWPDs,” Conference Proceeding of IEEE Lasers and Electro-OpticsSociety 2001 Annual Meeting, San Diego, CA, vol. 2, pp.887-888, 2001. [2.9] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech. vol. 47, pp.1265-1281, 1999. [2.10] M.-C. Tien, H.-H. Chang, J.-Y. Lu, L.-J. Chen, S.-Y. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Device saturation behavior of submillimeter-wave membrane photonic transmitters”, IEEE Photon. Technol. Lett., Vol. 16, pp.873-875, 2004. [2.11] J.-W. Shi, S.-W. Chu, M.-C. Tien, C.-K. Sun, Y.-J. Chiu, and J. E. Bowers, “Edge-coupled membrane terahertz photonic transmitters based on metal–semiconductor–metal traveling-wave photodetectors”, Appl. Phys. Lett. Vol. 81, pp.5108-5110, 2002. [2.12] E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence oin a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. Vol. 64, pp.3311-3313, 1994. [3.1] M. Tani, S. Matsuura, and K. Sakai, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs”, Appl. Opt., Vol. 36, pp.7853-7859 , 1997 [3.2] M. Tani, M. Herrmann, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging”, Meas. Sci. Technol. Vol. 13, pp. 1739-1745, 2002. [3.3] Q. Wu and X. C. Zhang, “Free space electrooptic samplingof terahertz beams”, Appl. Phys. Lett. Vol. 67, pp. 3523-3525, 1995 [3.4] A. Nahata, D. H. Auston, T. F. Heinz, and C. J. Wu, “Free-space electro-optic detec-. tion of continuous-wave terahertz radiation”, Appl. Phys. Lett. Vol. 68, pp. 150-152, 1996. [3.5] K. D. Möller and W. G. Rothshild, Far-infrared Spectroscopy (Wiley, New York 1971). [3.6] M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation”, Meas. Sci. Technol. Vol. 13, pp. 1727-1738, 2002. [3.7] H. A. Haus, “Mirrors and interferometers”, in Waves and Fields in Optoelectronics, (Prentice-Hall, Inc., New Jersey, 1984). [4.1] J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,“ Int. J. Infra. Milli. Waves, Vol. 17, No. 12, pp. 1997-2034, 1996. [4.2] A. Yariv, Optical Electronics in Modern Communications, (Oxford University Press, fifth edition, New York, 1997) [4.3] L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides”, Opt. Express, Vol. 12, pp. 1025-1035, 2004 [4.4] W. M. Eisasser, “Attenuation in a Dielectric Circular Rod”, J. Appl. Phys., Vol. 20, pp. 1193-1196, 1949 [4.5] A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, and H. M. Widmer, “Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,” Anal. Chem., Vol. 68, pp. 2905-2912, 1996 [4.6] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations, ” Science, Vol. 299, pp. 682-686, 2003 [4.7] D.M. Mittleman, R. H. Jacobsen, and M. C. Nuss, ”T-ray imaging,” IEEE J. Select. Top. Quant. Electron. Vol. 2, 679–692, 1996 [4.8] R. H. Jacobsen, D.M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett., Vol. 21, pp. 2011–2013, 1996 [4.9] R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. Vol. 29, pp. 257-261, 2003 [4.10] D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt., Vol. 8, pp. 303-307, 2003 [4.11] K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express, Vol. 11, pp. 2549–2554, 2003 [4.12] S. Wang, and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D, Vol. 37, R1-R36, 2004 [4.13] J. R. Birch, G. J. Simonis, M. N. Afsar, R. N. Clarke, J. M. Dutta, H. M. Frost, X. Gerbaus, A. Hadni, W. F. Hall, R. Heidinger, W. W. Ho, C. R. Jones, F. Koniger, R. L. Moore, H. Matsuo, T. Nakano, W. Richter, K. Sakai, M. R. Stead, U. Stumper, R. S. Vigil, and T. B. Wells, “ An Intercomparison of Measurement Techniques for the Determination of the Dielectric Properties of Solids at Near Millimetre Wavelengths,” IEEE Trans.Microwave Theory Tech., vol. MTT-42, pp. 956-965, 1994. [4.14] M. Born, E. Wolf, Principles of Optics, p.200 (Cambridge University Press, Cambridge, 1999) [5.1] A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, and H. M. Widmer, “Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,” Anal. Chem., Vol. 68, pp. 2905-2912, 1996 [5.2] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations, ” Science, Vol. 299, pp. 682-686, 2003 [5.3] D.M. Mittleman, R. H. Jacobsen, and M. C. Nuss, ”T-ray imaging,” IEEE J. Select. Top. Quant. Electron. Vol. 2, 679–692, 1996 [5.4] R. H. Jacobsen, D.M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett., Vol. 21, pp. 2011–2013, 1996 [5.5] R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. Vol. 29, pp. 257-261, 2003 [5.6] D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt., Vol. 8, pp. 303-307, 2003 [5.7] K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express, Vol. 11, pp. 2549–2554, 2003 [5.8] S. Wang, and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D, Vol. 37, R1-R36, 2004 [5.9] P. P. Bishnu, Fundamentals of Fibre Optics in Telecommunication and Sensor Systems (John Wiley & Sons, New York, NY 1993). [5.10] R. G. Hunsperger, Photonic Devices and Systems (Marcel Dekker, New York, NY 1994). [5.11] S. Sanghera, and I. D. Aggarwal, Infrared Fiber Optics (CRC Press, New York, NY 1998). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36627 | - |
| dc.description.abstract | 在電磁波頻譜中,兆赫波所位在的頻段是一個非常重要的區域,這個頻段所包含的頻率範圍大約從100GHz - 10THz,是介於微波與光波之間的過渡地帶。由於許多重要的物理現象都發生在這個頻段,兆赫波的相關研究近年來日益受到重視,各種產生及偵測兆赫波的方法也相繼被提出。然而由於大部份的物質對於兆赫波都有很強的吸收,在過去的兆赫波研究中大多都使用自由空間中的金屬反射鏡來改變兆赫波的傳播方向。利用這種方法所建構出來的系統很容易受到外界的干擾且在架設上十分沒有彈性,因此若是缺少一種可靠且低損耗的傳導方法,兆赫波系統在未來的實際應用上勢必會遭遇到很大的困難。有鑒於此,我們提出了一種次波長兆赫波光纖,可以有效地傳導兆赫波並且具有極低的衰減係數(~0.01cm-1)。
我們所設計的兆赫波光纖採用線徑比波長還小的聚乙烯細線或圓管作為核心(core),並以空氣作為外殼(cladding)。由於線徑小於波長,這種光纖所能傳播的模態只有HE11,且大部份光場都會在空氣中傳播,可以大幅減低兆赫波在傳播過程中被核心介質吸收的程度。此外由於聚乙烯在兆赫波頻段的吸收常數較其他材質為小,因此被限制在核心的光場在傳播過程中也會損失較少的能量。採用上述的架構,我們成功地減少兆赫波在傳輸中的損耗。相信這樣子的兆赫波光纖能夠有效地縮減兆赫波系統的大小並降低系統複雜度,對未來的兆赫波生物影像及分子偵測等等應用的實現有很大的幫助。 | zh_TW |
| dc.description.abstract | In the electromagnetic spectrum, terahertz frequencies, which usually defined as those in the range of 100 GHz – 10 THz, form a significant region that connects the microwave and optical-wave bands. Since various important physical phenomena happened in this region, more and more attention had been paid to the investigations of terahertz science in recent years. Many different techniques regarding the generation and detection of terahertz wave were also proposed one after another. However, for the reason that most of the materials have a great absorption constant in the terahertz frequency, the propagation of terahertz wave is usually controlled by metallic reflectors in almost all the applications, which makes the terahertz systems not only vulnerable to environmental disturbance but also inflexible in the construction of application setups. Hence, there will be a lot of difficulties in the future applications of terahertz system for lack of a reliable and low-loss guiding method. In view of this, we proposed and demonstrated a terahertz subwavelength fiber with a very low attenuation constant (~0.01 cm-1) for guiding terahertz wave.
In our design, the sub-wavelength fiber core is made of polyethylene wires or tubes that surrounded by the air serving as the cladding. Due to the sub-wavelength characteristic of the fiber core, the only sustained mode is HE11 which delivers most of the fields in the air cladding, which enormously reduces the degree of core absorption in the propagation. In addition, as polyethylene has a lower absorption constant in the terahertz region, the power delivered in the core will be attenuated less than the cores made of other materials. By adopting above structure, we successfully reduce the loss in terahertz wave guiding which can make the terahertz systems compact and less complex. We believe that it will be very helpful to the realization of terahertz applications such as fiber sensing, biomedical-imaging, and so on. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:08:27Z (GMT). No. of bitstreams: 1 ntu-94-R92941014-1.pdf: 1171221 bytes, checksum: 6a04bdfe44251061f8a47128e6aa4545 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 The Basics of Terahertz Technology 1 1.2 An Overview of the Thesis 5 Chapter 2 Construction of a Coherent Tunable Narrow-band 10 Terahertz Source 2.1 Excitation Source - Optical Coherent Control System 10 2.1.1 Grating Pair 11 2.1.2 Michelson Interferometer 13 2.1.3 Discussion 15 2.1.4 Autocorrelation Measurements 17 2.2 Terahertz Photonic Transmitter 28 2.2.1 The Layout of Terahertz Photonic Transmitter 38 2.2.2 Generation of Narrow-band Terahertz Wave 30 Chapter 3 Low-reflectivity Fabry-Perot Interferometer Based 35 Terahertz Fourier Transform Spectrometer 3.1 Theory of the Terahertz Fourier Transform Spectrometer 36 3.1.1 Fabry-Perot Interferometer 36 3.1.2 Fabry-Perot Based Fourier Transform Spectroscopy 39 3.2 Measurement of Terahertz Wave Spectrum 47 3.2.1 Construction of Terahertz Fourier Transform 47 Spectrometer 3.2.2 Spectrum Determination of the Terahertz Source 49 Chapter 4 Characteristic of Subwavelength Terahertz Fiber 55 4.1 The Basic Model of Subwavelength Terahertz Fibers 56 4.1.1 Wave Equation in Plastic Wires 56 4.1.2 Analysis of Low-loss Plastic Wires in Single-mode 59 Condition 4.2 The Subwavelength Terahertz Fiber Measurement 66 4.2.1 Experimental Setup and Fiber Preparation 66 4.2.2 Measurement of Fiber Attenuation 68 4.2.3 Coupling Efficiency of the Subwavelength Terahertz 69 Fiber 4.2.4 Hollow-core Terahertz Fiber 74 Chapter 5 Conclusions 78 5.1 Summary 78 5.2 Future Works 79 | |
| dc.language.iso | en | |
| dc.subject | 兆赫波 | zh_TW |
| dc.subject | 單模光纖 | zh_TW |
| dc.subject | single-mode fiber | en |
| dc.subject | terahertz | en |
| dc.title | 次波長兆赫波光纖 | zh_TW |
| dc.title | Terahertz Subwavelength Fiber | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 潘犀靈(Ci-Ling Pan),洪勝富(Sheng-Fu Horng),黃衍介(Yen-Ciheh Huang) | |
| dc.subject.keyword | 兆赫波,單模光纖, | zh_TW |
| dc.subject.keyword | terahertz,single-mode fiber, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
