請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36619完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧哲明博士 | |
| dc.contributor.author | Yao-Ting Huang | en |
| dc.contributor.author | 黃耀霆 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:08:07Z | - |
| dc.date.available | 2015-12-25 | |
| dc.date.copyright | 2005-08-02 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-21 | |
| dc.identifier.citation | Adams,J.M. and Cory,S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326.
Aggarwal,B.B. (2004). Nuclear factor-kappa-B: The enemy within. Cancer Cell 6, 203-208. Ahn,H.J., Kim,Y.S., Kim,J.U., Han,S.M., Shin,J.W., and Yang,H.O. (2004). Mechanism of taxol-induced apoptosis in human SKOV3 ovarian carcinoma cells. Journal of Cellular Biochemistry 91, 1043-1052. Akay,C., Thomas,C., III, and Gazitt,Y. (2004). Arsenic Trioxide and Paclitaxel Induce Apoptosis by Different Mechanisms. Cell Cycle 3, 324-334. Altieri,D.C. (2003). Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22, 8581-8589. Antonsson,B., Conti,F., Ciavatta,A., Montessuit,S., Lewis,S., Martinou,I., Bernasconi,L., Bernard,A., Mermod,J.J., Mazzei,G., Maundrell,K., Gambale,F., Sadoul,R., and Martinou,J.C. (1997). Inhibition of Bax channel-forming activity by Bcl-2. Science 277, 370-372. Avery,L. and Horvitz,H.R. (1987). A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant. Cell 51, 1071-1078. Bakhshi,A., Jensen,J.P., Goldman,P., Wright,J.J., McBride,O.W., Epstein,A.L., and Korsmeyer,S.J. (1985). Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41, 899-906. Becker,E.M., Schmidt,P., Schramm,M., Schroder,H., Walter,U., Hoenicka,M., Gerzer,R., and Stasch,J.P. (2000). The vasodilator-stimulated phosphoprotein (VASP): target of YC-1 and nitric oxide effects in human and rat platelets. J. Cardiovasc. Pharmacol. 35, 390-397. Bhalla,K.N. (2003). Microtubule-targeted anticancer agents and apoptosis. Oncogene 22, 9075-9086. Blagosklonny,M.V., Giannakakou,P., ElDeiry,W.S., Kingston,D.G.I., Higgs,P.I., Neckers,L., and Fojo,T. (1997). Raf-1/bcl-2 phosphorylation: A step from microtubule damage to cell death. Cancer Research 57, 130-135. Brunetti,M., Mascetra,N., Manarini,S., Martelli,N., Cerletti,C., Musiani,P., Aiello,F.B., and Evangelista,V. (2002). Inhibition of cGMP-dependent protein kinases potently decreases neutrophil spontaneous apoptosis. Biochem. Biophys. Res. Commun. 297, 498-501. Cande,C., Vahsen,N., Garrido,C., and Kroemer,G. (2004). Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death and Differentiation 11, 591-595. Canil,C.M. and Tannock,I.F. (2004). Is there a role for chemotherapy in prostate cancer? Br. J. Cancer 91, 1005-1011. Capdeville,R., Buchdunger,E., Zimmermann,J., and Matter,A. (2002). Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov. 1, 493-502. Carter,B.Z., Kornblau,S.M., Tsao,T., Wang,R.Y., Schober,W.D., Milella,M., Sung,H.G., Reed,J.C., and Andreeff,M. (2003). Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or prognosis. Blood 102, 4179-4186. Carvalho,A., Carmena,M., Sambade,C., Earnshaw,W.C., and Wheatley,S.P. (2003). Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. Journal of Cell Science 116, 2987-2998. Castedo,M., Perfettini,J.L., Roumie,T., Andreau,K., Medema,R., and Kroemer,G. (2004). Cell death by mitotic catastrophe: a molecular definition. Oncogene 23, 2825-2837. Chang,M.S., Lee,W.S., Teng,C.M., Lee,H.M., Sheu,J.R., Hsiao,G., and Lin,C.H. (2002). YC-1 increases cyclo-oxygenase-2 expression through protein kinase G- and p44/42 mitogen-activated protein kinase-dependent pathways in A549 cells. British Journal of Pharmacology 136, 558-567. Chau,B.N., Cheng,E.H., Kerr,D.A., and Hardwick,J.M. (2000). Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1. Mol Cell 6, 31-40. Chen,F., Hersh,B.M., Conradt,B., Zhou,Z., Riemer,D., Gruenbaum,Y., and Horvitz,H.R. (2000). Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 287, 1485-1489. Chen,H.W., Hsu,M.J., Chien,C.T., and Huang,H.C. (2001). Effect of alisol B acetate, a plant triterpene, on apoptosis in vascular smooth muscle cells and lymphocytes. Eur. J. Pharmacol. 419, 127-138. Chen,I.L., Chen,Y.L., Tzeng,C.C., and Chen,I.S. (2002). Synthesis and cytotoxic evaluation of some 4-anilinofuro[2,3-b]quinoline derivatives. Helvetica Chimica Acta 85, 2214-2221. Chen,I.S., Lin,Y.C., Tsai,I.L., Teng,C.M., Ko,F.N., Ishikawa,T., and Ishii,H. (1995). Coumarins and Antiplatetlet Aggregation Constituents from Zanthoxylum-Schinifolium. Phytochemistry 39, 1091-1097. Chou,C.C., Pan,S.L., Teng,C.M., and Guh,J.H. (2003). Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. Eur. J. Pharm. Sci. 19, 403-412. Chun,Y.S., Yeo,E.J., Choi,E., Teng,C.M., Bae,J.M., Kim,M.S., and Park,J.W. (2001). Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells. Biochemical Pharmacology 61, 947-954. Cory,S., Huang,D.C.S., and Adams,J.M. (2003). The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22, 8590-8607. Davis,F.M., Tsao,T.Y., Fowler,S.K., and Rao,P.N. (1983). Monoclonal antibodies to mitotic cells. Proc. Natl. Acad. Sci. U. S. A 80, 2926-2930. Degterev,A., Boyce,M., and Yuan,J.Y. (2003). A decade of caspases. Oncogene 22, 8543-8567. DeMarzo,A.M., Nelson,W.G., Isaacs,W.B., and Epstein,J.I. (2003). Pathological and molecular aspects of prostate cancer. Lancet 361, 955-964. Di,L.G., Tortora,G., D'Armiento,F.P., De,R.G., Staibano,S., Autorino,R., D'Armiento,M., De Laurentiis,M., De,P.S., Catalano,G., Bianco,A.R., and Ciardiello,F. (2002). Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin. Cancer Res. 8, 3438-3444. Druker,B.J., Tamura,S., Buchdunger,E., Ohno,S., Segal,G.M., Fanning,S., Zimmermann,J., and Lydon,N.B. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561-566. Eiseman,J.L., Eddington,N.D., Leslie,J., MacAuley,C., Sentz,D.L., Zuhowski,M., Kujawa,J.M., Young,D., and Egorin,M.J. (1994). Plasma pharmacokinetics and tissue distribution of paclitaxel in CD2F1 mice. Cancer Chemother. Pharmacol. 34, 465-471. Epstein,H.F., Waterston,R.H., and Brenner,S. (1974). A mutant affecting the heavy chain of myosin in Caenorhabditis elegans. J. Mol. Biol. 90, 291-300. Fadeel,B., Zhivotovsky,B., and Orrenius,S. (1999). All along the watchtower: on the regulation of apoptosis regulators. FASEB J. 13, 1647-1657. Faraci,F.M. and Sobey,C.G. (1999). Role of soluble guanylate cyclase in dilator responses of the cerebral microcirculation. Brain Res. 821, 368-373. Feldman,B.J. and Feldman,D. (2001). The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34-45. Ferrero,R. and Torres,M. (2001). Prolonged exposure to YC-1 induces apoptosis in adrenomedullary endothelial and chromaffin cells through a cGMP-independent mechanism. Neuropharmacology 41, 895-906. Figueroa,Y.G., Chan,A.K., Ibrahim,R., Tang,Y., Burow,M.E., Alam,J., Scandurro,A.B., and Beckman,B.S. (2002). NF-kappa B plays a key role in hypoxia-inducible factor-1-regulated erythropoietin gene expression. Experimental Hematology 30, 1419-1427. Friebe,A. and Koesling,D. (1998). Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol. Pharmacol. 53, 123-127. Friebe,A., Mullershausen,F., Smolenski,A., Walter,U., Schultz,G., and Koesling,D. (1998). YC-1 potentiates nitric oxide- and carbon monoxide-induced cyclic GMP effects in human platelets. Mol. Pharmacol. 54, 962-967. Gerl,R. and Vaux,D.L. (2005). Apoptosis in the development and treatment of cancer. Carcinogenesis 26, 263-270. Godlewski,M.M., Motyl,M.A., Gajkowska,B., Wareski,P., Koronkiewicz,M., and Motyl,T. (2001). Subcellular redistribution of BAX during apoptosis induced by anticancer drugs. Anti-Cancer Drugs 12, 607-617. Gronberg,H. (2003). Prostate cancer epidemiology. Lancet 361, 859-864. Haldar,S., Chintapalli,J., and Croce,C.M. (1996). Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Research 56, 1253-1255. Hanahan,D. and Weinberg,R.A. (2000). The hallmarks of cancer. Cell 100, 57-70. Hattori,T., Nishimura,H., Makino,B., Shindo,S., and Kawamura,H. (1998). [Sairei-to inhibits the production of endothelin-1 by nephritic glomeruli(2): alisols, possible candidates as active compounds]. Nippon Jinzo Gakkai Shi 40, 33-41. Hayden,M.S. and Ghosh,S. (2004). Signaling to NF-kappa B. Genes & Development 18, 2195-2224. Hellerstedt,B.A. and Pienta,K.J. (2002). The current state of hormonal therapy for prostate cancer. CA Cancer J. Clin. 52, 154-179. Hengartner,M.O. (2000). The biochemistry of apoptosis. Nature 407, 770-776. Hengartner,M.O. and Horvitz,H.R. (1994a). Activation of C. elegans cell death protein CED-9 by an amino-acid substitution in a domain conserved in Bcl-2. Nature 369, 318-320. Hengartner,M.O. and Horvitz,H.R. (1994b). C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665-676. Hernes,E., Fossa,S.D., Berner,A., Otnes,B., and Nesland,J.M. (2004). Expression of the epidermal growth factor receptor family in prostate carcinoma before and during androgen-independence. Br. J. Cancer 90, 449-454. Hoffmann,I., Clarke,P.R., Marcote,M.J., Karsenti,E., and Draetta,G. (1993). Phosphorylation and activation of human cdc25-C by cdc2--cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12, 53-63. Horvitz,H.R. and Sulston,J.E. (1990). 'Joy of the worm'. Genetics 126, 287-292. Hsiao,G., Huang,H.Y., Fong,T.H., Shen,M.Y., Lin,C.H., Teng,C.M., and Sheu,J.R. (2004). Inhibitory mechanisms of YC-1 and PMC in the induction of iNOS expression by lipoteichoic acid in RAW 264.7 macrophages. Biochemical Pharmacology 67, 1411-1419. Hsu,H.K., Juan,S.H., Ho,P.Y., Liang,Y.C., Lin,C.H., Teng,C.M., and Lee,W.S. (2003). YC-1 inhibits proliferation of human vascular endothelial cells through a cyclic GMP-independent pathway. Biochemical Pharmacology 66, 263-271. Huang,S.Y., Pettaway,C.A., Uehara,H., Bucana,C.D., and Fidler,I.J. (2001). Blockade of NF-kappa B activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20, 4188-4197. Hwang,T.L., Hung,H.W., Kao,S.H., Teng,C.M., Wu,C.C., and Cheng,S.J. (2003a). Soluble guanylyl cyclase activator YC-1 inhibits human neutrophil functions through a cGMP-independent but cAMP-dependent pathway. Mol. Pharmacol. 64, 1419-1427. Hwang,T.L., Wu,C.C., Guh,J.H., and Teng,C.M. (2003b). Potentiation of tumor necrosis factor-alpha expression by YC-1 in alveolar macrophages through a cyclic GMP-independent pathway. Biochem. Pharmacol. 66, 149-156. Hwang,T.L., Wu,C.C., and Teng,C.M. (1999). YC-1 potentiates nitric oxide-induced relaxation in guinea-pig trachea. Br. J. Pharmacol. 128, 577-584. Innocenti,F., Danesi,R., Di,P.A., Agen,C., Nardini,D., Bocci,G., and Del,T.M. (1995). Plasma and tissue disposition of paclitaxel (taxol) after intraperitoneal administration in mice. Drug Metab Dispos. 23, 713-717. Jani,A.B. and Hellman,S. (2003). Early prostate cancer: clinical decision-making. Lancet 361, 1045-1053. Jemal,A., Murray,T., Ward,E., Samuels,A., Tiwari,R.C., Ghafoor,A., Feuer,E.J., and Thun,M.J. (2005). Cancer Statistics, 2005. CA Cancer J. Clin. 55, 10-30. Johnson,J.I., Decker,S., Zaharevitz,D., Rubinstein,L.V., Venditti,J.M., Schepartz,S., Kalyandrug,S., Christian,M., Arbuck,S., Hollingshead,M., and Sausville,E.A. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424-1431. Johnson,M.I., Robinson,M.C., Marsh,C., Robson,C.N., Neal,D.E., and Hamdy,F.C. (1998). Expression of bcl-2, bax, and p53 in high-grade prostatic intraepithelial neoplasia and localized prostate cancer: Relationship with apoptosis and proliferation. Prostate 37, 223-229. Johnstone,R.W., Ruefli,A.A., and Lowe,S.W. (2002). Apoptosis: A link between cancer genetics and chemotherapy. Cell 108, 153-164. Jordan,M.A. and Wilson,L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer 4, 253-265. Jung,Y.J., Isaacs,J.S., Lee,S., Trepel,J., and Neckers,L. (2003a). Microtubule disruption utilizes an NF kappa B-dependent pathway to stabilize HIF-1 alpha protein. Journal of Biological Chemistry 278, 7445-7452. Jung,Y.J., Isaacs,J.S., Lee,S.M., Trepel,J., and Neckers,L. (2003b). IL-1 beta mediated up-regulation of HIF-1 alpha via an NFkB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. Faseb Journal 17. Kamb,A. (2005). What's wrong with our cancer models? Nat. Rev. Drug Discov. 4, 161-165. Kantarjian,H.M., Talpaz,M., O'Brien,S., Smith,T.L., Giles,F.J., Faderl,S., Thomas,D.A., Garcia-Manero,G., Issa,J.P., Andreeff,M., Kornblau,S.M., Koller,C., Beran,M., Keating,M., Rios,M.B., Shan,J., Resta,D., Capdeville,R., Hayes,K., Albitar,M., Freireich,E.J., and Cortes,J.E. (2002). Imatinib mesylate for Philadelphia chromosome-positive, chronic-phase myeloid leukemia after failure of interferon-alpha: follow-up results. Clin. Cancer Res. 8, 2177-2187. Karin,M., Yamamoto,Y., and Wang,Q.M. (2004). The IKKNF-kappa B system: A treasure trove for drug development. Nature Reviews Drug Discovery 3, 17-26. Kelland,L.R. (2004). Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur. J. Cancer 40, 827-836. Kerr,J.F., Wyllie,A.H., and Currie,A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. Kluck,R.M., Bossy-Wetzel,E., Green,D.R., and Newmeyer,D.D. (1997). The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-1136. Ko,F.N., Wu,C.C., Kuo,S.C., Lee,F.Y., and Teng,C.M. (1994). Yc-1, A Novel Activator of Platelet Guanylate-Cyclase. Blood 84, 4226-4233. Kubo,M., Matsuda,H., Tomohiro,N., and Yoshikawa,M. (1997). Studies on Alismatis rhizoma. I. Anti-allergic effects of methanol extract and six terpene components from Alismatis rhizoma (dried rhizome of Alisma orientale). Biol. Pharm. Bull. 20, 511-516. Kuwana,T. and Newmeyer,D.D. (2003). Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr. Opin. Cell Biol 15, 691-699. Le,P.C., Koumakpayi,I.H., Lessard,L., Mes-Masson,A.M., and Saad,F. (2005). EGFR and Her-2 regulate the constitutive activation of NF-kappaB in PC-3 prostate cancer cells. Prostate. Leaf,C. (2004). Why we're losing the war on cancer (and how to win it). Fortune. 149, 76-6, 88. Lee,S.M., Kim,J.H., Zhang,Y., An,R.B., Min,B.S., Joung,H., and Lee,H.K. (2003). Anti-complementary activity of protostane-type triterpenes from Alismatis rhizoma. Arch. Pharm. Res. 26, 463-465. Leist,M. and Jaattela,M. (2001). Four deaths and a funeral: From caspases to alternative mechanisms. Nature Reviews Molecular Cell Biology 2, 589-598. Lengauer,C., Diaz,L.A., Jr., and Saha,S. (2005). Cancer drug discovery through collaboration. Nat. Rev. Drug Discov. 4, 375-380. Ling,Y.H., Tornos,C., and Perez-Soler,R. (1998). Phosphorylation of Bcl-2 is a marker of M phase events and not a determinant of apoptosis. Journal of Biological Chemistry 273, 18984-18991. Liu,X., Kim,C.N., Yang,J., Jemmerson,R., and Wang,X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. Lowe,S.W. and Lin,A.W. (2000). Apoptosis in cancer. Carcinogenesis 21, 485-495. Mann,J. (2002). Natural products in cancer chemotherapy: past, present and future. Nature Reviews Cancer 2, 143-148. Martel,C.L., Gumerlock,P.H., Meyers,F.J., and Lara,P.N. (2003). Current strategies in the management of hormone refractory prostate cancer. Cancer Treat. Rev 29, 171-187. Marzo,I., Brenner,C., Zamzami,N., Jurgensmeier,J.M., Susin,S.A., Vieira,H.L., Prevost,M.C., Xie,Z., Matsuyama,S., Reed,J.C., and Kroemer,G. (1998). Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027-2031. Matsuda,H., Kageura,T., Toguchida,I., Murakami,T., Kishi,A., and Yoshikawa,M. (1999). Effects of sesquiterpenes and triterpenes from the rhizome of Alisma orientale on nitric oxide production in lipopolysaccharide-activated macrophages: absolute stereostructures of alismaketones-B 23-acetate and -C 23-acetate. Bioorg. Med. Chem. Lett. 9, 3081-3086. Matsuda,H., Tomohiro,N., Yoshikawa,M., and Kubo,M. (1998). Studies on Alismatis Rhizoma. II. Anti-complementary activities of methanol extract and terpene components from Alismatis Rhizoma (dried rhizome of Alisma orientale). Biol. Pharm. Bull. 21, 1317-1321. McCarty,M.F. (2004). Targeting multiple signaling pathways as a strategy for managing prostate cancer: multifocal signal modulation therapy. Integr. Cancer Ther. 3, 349-380. Minn,A.J., Velez,P., Schendel,S.L., Liang,H., Muchmore,S.W., Fesik,S.W., Fill,M., and Thompson,C.B. (1997). Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385, 353-357. Moeller,B.J., Cao,Y.T., Li,C.Y., and Dewhirst,M.W. (2004). Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: Role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429-441. Muchmore,S.W., Sattler,M., Liang,H., Meadows,R.P., Harlan,J.E., Yoon,H.S., Nettesheim,D., Chang,B.S., Thompson,C.B., Wong,S.L., Ng,S.L., and Fesik,S.W. (1996). X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335-341. Murray,A.W. (2004). Recycling the cell cycle: Cyclins revisited. Cell 116, 221-234. Neidle,S. and Thurston,D.E. (2005). Chemical approaches to the discovery and development of cancer therapies. Nat. Rev. Cancer 5, 285-296. Nelson,W.G., De Marzo,A.M., and Isaacs,W.B. (2003). Prostate cancer. N. Engl. J. Med. 349, 366-381. Ng,F.W., Nguyen,M., Kwan,T., Branton,P.E., Nicholson,D.W., Cromlish,J.A., and Shore,G.C. (1997). p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol 139, 327-338. Nigg,E.A. (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nature Reviews Molecular Cell Biology 2, 21-32. Okada,H. and Mak,T.W. (2004). Pathways of apoptotic and non-apoptotic death in tumour cells. Nature Reviews Cancer 4, 592-603. Papandreou,C.N., Daliani,D.D., Nix,D., Yang,H., Madden,T., Wang,X.M., Pien,C.S., Millikan,R.E., Tu,S.M., Pagliaro,L., Kim,J., Adams,J., Elliott,P., Esseltine,D., Petrusich,A., Dieringer,P., Perez,C., and Logothetis,C.J. (2004). Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. Journal of Clinical Oncology 22, 2108-2121. Papandreou,C.N. and Logothetis,C.J. (2004). Bortezomib as a potential treatment for prostate cancer. Cancer Research 64, 5036-5043. Parkin,D.M. (2001). Global cancer statistics in the year 2000. Lancet Oncol. 2, 533-543. Pelengaris,S., Khan,M., and Evan,G. (2002). c-MYC: more than just a matter of life and death. Nat Rev Cancer 2, 764-776. Perchellet,E.M., Wang,Y., Weber,R.L., Lou,K., Hua,D.H., and Perchellet,J.P. (2004). Antitumor triptycene bisquinones induce a caspase-independent release of mitochondrial cytochrome c and a caspase-2-mediated activation of initiator caspase-8 and -9 in HL-60 cells by a mechanism which does not involve Fas signaling. Anticancer Drugs 15, 929-946. Peterson,J.K. and Houghton,P.J. (2004). Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur. J. Cancer 40, 837-844. Pianetti,S., Arsura,M., Romieu-Mourez,R., Coffey,R.J., and Sonenshein,G.E. (2001). Her-2/neu overexpression induces NF-kappaB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IkappaB-alpha that can be inhibited by the tumor suppressor PTEN. Oncogene 20, 1287-1299. Pollack,A., Cowen,D., Troncoso,P., Zagars,G.K., von Eschenbach,A.C., Meistrich,M.L., and McDonnell,T. (2003). Molecular markers of outcome after radiotherapy in patients with prostate carcinoma - Ki-67, bcl-2, bax, and bcl-x. Cancer 97, 1630-1638. Potosky,A.L., Feuer,E.J., and Levin,D.L. (2001). Impact of screening on incidence and mortality of prostate cancer in the United States. Epidemiol. Rev. 23, 181-186. Pratesi,G., Perego,P., and Zunino,F. (2001). Role of Bcl-2 and its post-transcriptional modification in response to antitumor therapy. Biochemical Pharmacology 61, 381-386. Raghavan,D. (2004). Chemotherapy for prostate cancer: small steps or leaps and bounds? No huzzahs just yet! Br. J. Cancer 91, 1003-1004. Reed,J.C. (2003). Apoptosis-targeted therapies for cancer. Cancer Cell 3, 17-22. Rosen,H. and Abribat,T. (2005). The rise and rise of drug delivery. Nat. Rev. Drug Discov. 4, 381-385. Sattler,M., Liang,H., Nettesheim,D., Meadows,R.P., Harlan,J.E., Eberstadt,M., Yoon,H.S., Shuker,S.B., Chang,B.S., Minn,A.J., Thompson,C.B., and Fesik,S.W. (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983-986. Scatena,C.D., Stewart,Z.A., Mays,D., Tang,L.J., Keefer,C.J., Leach,S.D., and Pietenpol,J.A. (1998). Mitotic phosphorylation of Bcl-2 during normal cell cycle progression and taxol-induced growth arrest. Journal of Biological Chemistry 273, 30777-30784. Shaffer,D.R. and Scher,H.I. (2003). Prostate cancer: a dynamic illness with shifting targets. Lancet Oncol. 4, 407-414. Shaham,S. and Horvitz,H.R. (1996). An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell 86, 201-208. Shaham,S., Reddien,P.W., Davies,B., and Horvitz,H.R. (1999). Mutational analysis of the Caenorhabditis elegans cell-death gene ced-3. Genetics 153, 1655-1671. Shi,Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9, 459-470. Shimizu,S., Konishi,A., Kodama,T., and Tsujimoto,Y. (2000). BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. U. S. A 97, 3100-3105. Shimizu,S., Narita,M., and Tsujimoto,Y. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483-487. Shimizu,S. and Tsujimoto,Y. (2000). Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc. Natl. Acad. Sci. U. S. A 97, 577-582. Shukla,S. and Gupta,S. (2004). Suppression of constitutive and tumor necrosis factor alpha-induced nuclear factor (NF)-kappa B activation and induction of apoptosis by apigenin in human prostate carcinoma PC-3 cells: Correlation with down-regulation of NF-kappa B-responsive genes. Clinical Cancer Research 10, 3169-3178. Sobel,R.E. and Sadar,M.D. (2005b). Cell lines used in prostate cancer research: a compendium of old and new lines--part 2. J. Urol. 173, 360-372. Sobel,R.E. and Sadar,M.D. (2005a). Cell lines used in prostate cancer research: a compendium of old and new lines--part 1. J. Urol. 173, 342-359. Sparreboom,A., van,T.O., Nooijen,W.J., and Beijnen,J.H. (1996). Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res. 56, 2112-2115. Su,T.L., Lin,F.W., Teng,C.M., Chen,K.T., and Wu,T.S. (1998). Antiplatelet aggregation principles from the stem and root bark of Melicope triphylla. Phytotherapy Research 12, S74-S76. Suggitt,M. and Bibby,M.C. (2005). 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin. Cancer Res. 11, 971-981. Suh,J. and Rabson,A.B. (2004). NF-kappa B activation in human prostate cancer: Important mediator or epiphenomenon? Journal of Cellular Biochemistry 91, 100-117. Suh,J.H., Payvandi,F., Edelstein,L.C., Amenta,P.S., Zong,W.X., Gelinas,C., and Rabson,A.B. (2002). Mechanisms of constitutive NF-kappa B activation in human prostate cancer cells. Prostate 52, 183-200. Sulston,J.E. (1976). Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond B Biol. Sci. 275, 287-297. Sulston,J.E. (2003). Caenorhabditis elegans: the cell lineage and beyond (Nobel lecture). Chembiochem. 4, 688-696. Sulston,J.E. and Brenner,S. (1974). The DNA of Caenorhabditis elegans. Genetics 77, 95-104. Susin,S.A., Lorenzo,H.K., Zamzami,N., Marzo,I., Snow,B.E., Brothers,G.M., Mangion,J., Jacotot,E., Costantini,P., Loeffler,M., Larochette,N., Goodlett,D.R., Aebersold,R., Siderovski,D.P., Penninger,J.M., and Kroemer,G. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446. Tang,W.C., Hemm,I., and Bertram,B. (2003). Recent development of antitumor agents from Chinese herbal medicines; Part I. Low molecular compounds. Planta Medica 69, 97-108. Tannock,I.F., de,W.R., Berry,W.R., Horti,J., Pluzanska,A., Chi,K.N., Oudard,S., Theodore,C., James,N.D., Turesson,I., Rosenthal,M.A., and Eisenberger,M.A. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502-1512. Tsujimoto,Y., Yunis,J., Onorato-Showe,L., Erikson,J., Nowell,P.C., and Croce,C.M. (1984). Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224, 1403-1406. van Bokhoven,A., Varella-Garcia,M., Korch,C., Johannes,W.U., Smith,E.E., Miller,H.L., Nordeen,S.K., Miller,G.J., and Lucia,M.S. (2003). Molecular characterization of human prostate carcinoma cell lines. Prostate 57, 205-225. Vogelstein,B. and Kinzler,K.W. (2004). Cancer genes and the pathways they control. Nature Medicine 10, 789-799. Voskoglou-Nomikos,T., Pater,J.L., and Seymour,L. (2003). Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res. 9, 4227-4239. Wall,N.R., O'Connor,D.S., Plescia,J., Pommier,Y., and Altieri,D.C. (2003). Suppression of survivin phosphorylation on Thr(34) by flavopiridol enhances tumor cell apoptosis. Cancer Research 63, 230-235. Wang,G., Reed,E., and Li,Q.Q. (2004). Apoptosis in prostate cancer: progressive and therapeutic implications (Review). Int. J. Mol. Med. 14, 23-34. Wang,J.P., Chang,L.C., Huang,L.J., and Kuo,S.C. (2001). Inhibition of extracellular Ca(2+) entry by YC-1, an activator of soluble guanylyl cyclase, through a cyclic GMP-independent pathway in rat neutrophils. Biochem. Pharmacol. 62, 679-684. Wang,J.P., Chang,L.C., Raung,S.L., Hsu,M.F., Huang,L.J., and Kuo,S.C. (2002). Inhibition of superoxide anion generation by YC-1 in rat neutrophils through cyclic GMP-dependent and -independent mechanisms. Biochem. Pharmacol. 63, 577-585. Wang,L.G., Liu,X.M., Kreis,W., and Budman,D.R. (1999). The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemotherapy and Pharmacology 44, 355-361. Webber,M.M., Bello,D., and Quader,S. (1997). Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications Part 2. Tumorigenic cell lines. Prostate 30, 58-64. Weinberg,R.A. (1989). Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res. 49, 3713-3721. Wu,C.C., Ko,F.N., Huang,T.F., and Teng,C.M. (1996). Mechanisms-regulated platelet spreading after initial platelet contact with collagen. Biochem. Biophys. Res. Commun. 220, 388-393. Wu,C.C., Ko,F.N., Kuo,S.C., Lee,F.Y., and Teng,C.M. (1995). YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylate cyclase. Br. J. Pharmacol. 116, 1973-1978. Wu,C.C., Ko,F.N., and Teng,C.M. (1997). Inhibition of platelet adhesion to collagen by cGMP-elevating agents. Biochem. Biophys. Res. Commun. 231, 412-416. Wu,C.C., Kuo,S.C., Lee,F.Y., and Teng,C.M. (1999). YC-1 potentiates the antiplatelet effect of hydrogen peroxide via sensitization of soluble guanylate cyclase. Eur. J. Pharmacol. 381, 185-191. Wu,T.S., Shi,L.S., Wang,J.J., Iou,S.C., Chang,H.C., Chen,Y.P., Kuo,Y.H., Chang,Y.L., and Teng,C.M. (2003). Cytotoxic and antiplatelet aggregation principles of Ruta graveolens. Journal of the Chinese Chemical Society 50, 171-178. Xue,D. and Horvitz,H.R. (1995). Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377, 248-251. Xue,D., Shaham,S., and Horvitz,H.R. (1996). The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev. 10, 1073-1083. Yeo,E.J., Chun,Y.S., Cho,Y.S., Kim,J.H., Lee,J.C., Kim,M.S., and Park,J.W. (2003). YC-1: A potential anticancer drug targeting hypoxia-inducible factor 1. Journal of the National Cancer Institute 95, 516-525. Yu,S.M., Ko,F.N., Su,M.J., Wu,T.S., Wang,M.L., Huang,T.E., and Teng,C.M. (1992). Vasorelaxing Effect in Rat Thoracic Aorta Caused by Fraxinellone and Dictamine Isolated from the Chinese Herb Dictamnus-Dasycarpus Turcz - Comparison with Cromakalim and Ca2+ Channel Blockers. Naunyn-Schmiedebergs Archives of Pharmacology 345, 349-355. Yuan,J., Shaham,S., Ledoux,S., Ellis,H.M., and Horvitz,H.R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641-652. Yuan,J.Y. and Horvitz,H.R. (1990). The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev. Biol. 138, 33-41. Zhang,H., Xu,Q., Krajewski,S., Krajewska,M., Xie,Z., Fuess,S., Kitada,S., Pawlowski,K., Godzik,A., and Reed,J.C. (2000). BAR: An apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proc. Natl Acad. Sci U. S. A 97, 2597-2602. Zhong,H., Chiles,K., Feldser,D., Laughner,E., Hanrahan,C., Georgescu,M.M., Simons,J.W., and Semenza,G.L. (2000). Modulation of hypoxia-inducible factor 1 alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: Implications for tumor angiogenesis and therapeutics. Cancer Research 60, 1541-1545. Zhou,B.P., Hu,M.C., Miller,S.A., Yu,Z., Xia,W., Lin,S.Y., and Hung,M.C. (2000). HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway. J. Biol. Chem. 275, 8027-8031. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36619 | - |
| dc.description.abstract | 本論文闡明Alisol B acetate、CIL-102以及YC-1在PC-3前列腺癌細胞株之抗癌作用機轉。
中草藥具備許多抗癌活性成份。本論文的第一部份,我們發現澤瀉中的一種主成份Alisol B acetate可造成PC-3細胞濃度與時間相依性的細胞凋亡。且此一凋亡作用與粒線體膜電位的變化,呈現良好的相關性,顯示粒線體調控之細胞凋亡途徑,參與Alisol B acetate引起的凋亡作用。Alisol B acetate引起Bax蛋白質表現增加且轉置到細胞核,並可觀察到啟始caspase-8、caspase-9及執行caspase-3的活化,顯示外在與內在細胞凋亡途徑均參與Alisol B acetate引起的凋亡作用。研究証實,Alisol B acetate引起粒線體調控的細胞凋亡,伴隨caspase-8、caspase-9、caspase-3之活化,而Bax的表現量增加及其細胞位置的轉變,可能為此一系列作用之重要關鍵步驟。 本論文的第二部份,以一系列的實驗,闡明系列衍生物CIL-102於賀爾蒙抗性前列腺癌細胞株的抗腫瘤作用。以3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide和sulforhodamine B分析法發現,CIL-102具備很強之抗癌活性。免疫螢光染色法及微細蛋白聚點分析法,顯示CIL-102會與微管蛋白結合並擾亂微小管組織化。流式細胞儀分析法顯示CIL-102造成G2/M細胞週期停滯及凋亡細胞增加。此外,CIL-102造成PC-3細胞中cyclin B1蛋白表現增加及p34cdc2激酶活性增加。而p34cdc2抑制劑olomoucine則明顯減少CIL-102造成的有絲分裂細胞週期蓄積。此外,CIL-102也引起Bcl-2蛋白、Cdc25C蛋白磷酸化以及survivin蛋白表現增加。雖然CIL-102引起的細胞凋亡與caspase-3的活化有關,但廣效型caspase抑制劑僅能部份減低CIL-102引起的細胞凋亡,另一方面,AIF由粒線體釋放到細胞質,顯示存在一條caspase非依賴的訊息傳遞途徑。綜合而言,CIL-102藉由與微小管蛋白結合,擾亂微小管組織化,進而引起細胞週期停滯及細胞凋亡。此外,CIL-102所造成之細胞週期停滯,部分藉由調控細胞週期激酶而來;CIL-102所造成的細胞凋亡,則由caspase與non-caspase兩者所貢獻。 雖然已知indazole衍生物YC-1具抗腫瘤作用,然而其作用標的與機轉仍未被充份研究。本論文第三部份,即在探討YC-1是否直接作用在前列腺癌細胞並引起細胞凋亡,並進一步闡明其抗腫瘤機轉。實驗發現,YC-1可濃度及時間相依性地抑制PC-3細胞增長。以4’,6-diamidino-2-phe-nylindole染色,可發現經YC-1處理的PC-3細胞,其染色質有濃縮現象且sub-G1期細胞增加,這此証據指出細胞凋亡的發生。進一步檢測亦發現,YC-1造成PC-3細胞之caspase-3及poly(ADP-ribose) polymerase裂解。免疫螢光染色法及Enzyme-Linked Immunosorbent Assay分析可發現NF-κB的分佈及活性受到YC-1的抑制。此外,可觀察到磷酸態IκBα蛋白減少及IκBα蛋白蓄積。以腫瘤移植動物模式評估YC-1之抗腫瘤作用,可發現YC-1能有效抑制腫瘤的增大。綜合來說,YC-1在in vitro及in vivo模式均具有效抗腫瘤活性,且YC-1抑制NF-κB活化的作用,或可說明YC-1的抗腫瘤作用機轉。 | zh_TW |
| dc.description.abstract | In the present studies we elucidate the anti-tumour mechanisms of Alisol B acetate, CIL-102 and YC-1 in the androgen-refractory human prostate adenocarcinoma cell line PC-3 cells.
The anti-tumor potential of components from Chinese herbal medicines has been greatly concerned. In the first part, alisol B acetate, a triterpene from Alismatis rhizoma, induced apoptotic cell death in PC-3 cells in a time- and concentration-dependent manner. A good correlation between loss of mitochondrial membrane potential and apoptotic cell death was apparent, indicating the participation of mitochondria-related mechanism. Alisol B acetate induced Bax up-regulation and nuclear translocation; it also induced the activation of initiator caspase-8 and caspase-9, and executor caspase-3, suggesting the involvement of both extrinsic and intrinsic apoptosis pathways. Taken together, it is suggested that alisol B acetate induces apoptosis in PC-3 cells via a mitochondria-mediated mechanism with activation of caspase-8, -9 and -3. Furthermore, the Bax activation and translocation from the cytosol to nucleus might be a crucial response to the apoptotic effect. In the second part, CIL-102, a 4-anilinofuro[2,3-b]quinoline derivative, displayed a potent anti-tumor effect in PC-3 cells by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide and sulforhodamine B assays. Immunofluorescence microscopy and in vitro tubulin assembly assays indicated that CIL-102 bound to tubulin and disrupted microtubule organization. The data from flow cytometric analysis showed that CIL-102 caused cells to accumulate in G2/M phase and hypodiploid sub-G1 phase of the cell cycle. CIL-102-induced apoptosis was also characterized by immunofluorescence microscopy. Additionally, CIL-102 exposure induced up-regulation of cyclin B1 and p34cdc2 kinase activity while olomoucine, a p34cdc2 inhibitor, profoundly reduced the number of cells accumulated in mitotic phase. Moreover, CIL-102 also induced the increase of Bcl-2 phosphorylation, Cdc25C phosphorylation, and survivin expression. Although CIL-102-induced apoptosis was associated with activation of caspase-3, benzyloxycarbonyl-VAD-fluoromethyl ketone, a pancaspase inhibitor, only partially inhibited the apoptosis, and apoptosis inducing factor(AIF) was translocated from mitochondria to cytosol, suggesting the involvement of a caspase-independent pathway. Taken together, it is suggested that CIL-102 induces mitotic arrest and apoptosis by binding to tubulin and inhibiting tubulin polymerization. CIL-102 causes mitotic arrest, at least partly, by modulating cyclin-dependent kinases and then apoptosis executed by caspase and noncaspase pathways. Although the indazole compound, YC-1, is reported to exert anticancer activities in several cancer cell types, its target and mechanism of action have not been well explored. The objectives of this study were to ascertain whether YC-1 directly induces apoptosis in prostate cancer cells and to explore the anti-tumor mechanism. YC-1 suppressed growth of PC-3 cells in a concentration- and time-dependent manner. Apoptosis was determined using 4’,6-diamidino-2-phe-nylindole staining and cell cycle progression was examined by FACScan flow cytometry. YC-1 treatment showed chromatin condensation and increased the percentage of PC-3 cells in the hypodiploid sub-G1 phase, indicative of apoptosis. Additionally, cells exposed to YC-1 were found to induce activation of caspase-3 and cleavage of PARP. Translocation and activation of NF-κB were determined by immunofluorescent staining and ELISA, respectively. The results demonstrated that YC-1 abolished constitutive nuclear translocation and activation of NF-κB/p65. Furthermore, inhibition of IκBα phosphorylation and accumulation of IκBα were observed. The anti-tumor effects of YC-1 were evaluated by measuring the growth of tumor xenografts in SCID mice. The data demonstrated that the increase of tumor size was significantly inhibited by YC-1. It is suggested that the YC-1 displays potential anti-tumor activity in both in vitro and in vivo models and the suppression of NF-κB activation might explain YC-1-induced anti-tumor effect in PC-3 cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:08:07Z (GMT). No. of bitstreams: 1 ntu-94-D90443005-1.pdf: 3596255 bytes, checksum: 1adbb5b5df0d12c53f6c1b30f2ce84a8 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目錄
縮寫表 - 1 - 中文摘要 - 3 - ABSTRACT - 7 - 研究動機與目的 - 11 - 第一章 - 13 - 文獻回顧 - 13 - 前列腺癌 - 14 - 細胞死亡 - 21 - 細胞凋亡及其機轉 - 25 - 前列腺癌與細胞凋亡 - 32 - 抗癌藥物研發 - 35 - 第二章 - 49 - 實驗材料與方法 - 49 - 第三章 - 65 - ALISOL B MONOACETATE引起前列腺癌細胞凋亡作用的機轉探討 - 65 - 第一節 緒論 - 66 - Alisol B monoacetate - 66 - 第二節 結果 - 66 - 第三節 討論 - 69 - 第四章 - 83 - CIL-102引起前列腺癌細胞之細胞週期停滯與細胞凋亡的機轉探討 - 83 - 第一節 緒論 - 84 - 微小管(Microtubule) - 84 - 抗微小管作用劑及前列腺癌 - 85 - CIL-102 - 86 - 第二節 結果 - 87 - 第三節 討論 - 92 - 第五章 - 113 - YC-1引起前列腺癌細胞之細胞凋亡的機轉探討 - 113 - 第一節 緒論 - 114 - NF-κB - 114 - 前列腺癌之NF-κB活性 - 114 - YC-1 - 115 - 第二節 結果 - 120 - 第三節 討論 - 124 - 第六章 - 139 - 結論與展望 - 139 - REFERENCES - 147 - 著作 與 獎項 壹 | |
| dc.language.iso | zh-TW | |
| dc.subject | 細胞週期 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 前列腺癌 | zh_TW |
| dc.subject | apoptosis | en |
| dc.subject | cell cycle | en |
| dc.subject | prostate cancer | en |
| dc.title | 經由調控細胞週期與訊息傳遞途徑之抗前列腺癌藥物作用機轉探討 | zh_TW |
| dc.title | Targeting Cell Cycle and Signaling Pathways by Anticancer Agents in Prostate Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 顧記華博士 | |
| dc.contributor.oralexamcommittee | 黃德富博士,郭盛助博士,楊泮池博士,林建煌博士,顏茂雄博士,楊春茂博士 | |
| dc.subject.keyword | 前列腺癌,細胞凋亡,細胞週期, | zh_TW |
| dc.subject.keyword | prostate cancer,apoptosis,cell cycle, | en |
| dc.relation.page | 164 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 3.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
