Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36610Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 戴怡德 | |
| dc.contributor.author | Ming-Hui Chang | en |
| dc.contributor.author | 張名惠 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:07:43Z | - |
| dc.date.available | 2006-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-21 | |
| dc.identifier.citation | Ardizzone, S., C. L. Bianchi, and B. Vercelli, “MgO powders: interplay between adsorbed species and localisation of basic sites”, Applied Surface Science, 126, pp.169-175 (1998)
Ardizzone, S., C. L. Bianchi, and B. Vercelli, “Structural and morphological features of MgO powders. The key role of the preparative starting compound”, Journal of Materials Research, 13(8), pp.2218-2223 (1998) Bhandarkar, S., R. Brown, and J. Estrin, “Studies in rapid precipitation of hydroxide of calcium and magnesium”, Journal of Crystal Growth, 97, pp.406-414 (1989) Boldyrev, A. I. and J. Simons, “Why are (MgO)n clusters and crystalline MgO so reactive?”, J. Phys. Chem., 100, pp.8023-8030 (1996) Boodhoo, K. V. K. and R. J. Jachuck, “Process intensification: spinning disk reactor for syrene polymerization”, Applied Thermal Engineering, 20, pp.1127-1146 (2000) Booster, J. L., A. Van Sandwijk, and M. A. Reuter, “Conversion of magnesium fluoride to magnesium hydroxide”, Minerals Engineering, 16, pp.273-281 (2003) Burns, J. R. and C. Ramshaw, “process intensification: visual study of liquid maldistribution in rotating packed beds”, Chem. Eng. Sci., 51, pp.1347-1352 (1996) Cafiero, L. M., G. Baffi, A. Chianese, and R. J. J. Jachuck, “Process intensification: precipitation of barium sulfate using a spinning disk reactor”, Ind. Eng. Chem. Res., 41, pp.5240-5246 (2002) Callister, W. D., “Material science and engineering an introduction”, 6th ed., p.36, John Wiley & Sons, Inc., New York (2003) Chen, Y. S. and H. S. Liu, “Absorption of VOCs in a rotating packed bed”, Ind. Eng. Chem. Res., 41, pp.1583-1588 (2002) Chen, J. F., Y. H. Wang, F. Guo, X. M. Wang, and C. Zheng, “Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation”, Ind. Eng. Chem. Res., 39, pp.948-954 (2000) Choudhary, V. R., V. H. Rane, and R. V. Gadre, “Influence of precursors used in preparation of MgO on its surface properties and catalytic activity in oxidative coupling of methane”, Journal of Catalysis, 145, pp.300-311 (1994) Cook, M. and J. F. Harper, “The influence of magnesium hydroxide morphology on the crystallinity and properties of filled polypropylene”, Advanced in Polymer Technology, 17(1), pp.53-62 (1998) Ding, Y., G. Zhang, H. Wu, B. Hai, L. Wang, and Y. Qian, “Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis”, Chem. Mater., 13, pp.435-440 (2001) Ding, Y., G. Zhang, S. Zhang, X. Huang, W. Yu, and Y. Qian, “Preparation and characterization of magnesium hydroxide sulfate hydrate whiskers”, Chem. Mater., 12, pp.2845-2852 (2000) Donnay, J. D. H. and H. M. Ondik, “Crystal data: determinative tables, v.2: inorganic compounds”, 3rd ed., 2, p.H-161, National Bureau of Standards, Washington (1972-73) Gleiter, H., “Nanocrystalline materials”, Progress in Materials Science, 33, pp.223-345 (1989) Harold P., Klug and L. E. Alexander, “X-ray diffraction procedures for polycrystalline and amorphous materials”, John Wiley &sons, New York (1954) Hayashi, C., ”Ultrafine particles”, Physics Today, 12, p.44 (1987) Henrist, C., J. P. Mathieu, C. Vogels, A. Rulmont, and R. Cloots, “Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution”, Journal of Crystal Growth, 249, pp.321-330 (2003) Jeevanandam, P. and K. J. Klabunde, “A study on adsorption of surfactant molecules on magnesium oxide nanocrystals prepared by an aerogel route”, Langmuir, 18, pp.5309-5313 (2002) Jeevanandam, P. and K. J. Klabunde, “Redispersion and reactivity studies on surfactant-coated magnesium oxide nanoparticles”, Langmuir, 19, pp.5491-5495 (2003) Jost, H., M. Braun, and Ch. Carius, “The role of reactivity in syntheses and the properties of magnesium oxide”, Solid State Ionics, 101-103, pp.221-228 (1997) Li, Y., M. Sui, Y. Ding, G. Zhang, J. Zhuang, and C. Wang, “Preparation of Mg(OH)2 nanorods”, Advanced Materials, 12(11), pp.818-821 (2000) Lin, C. C. and H. S. Liu, “Adsorption in a centrifugal field: basic dye adsorption by activated carbon”, Ind. Eng. Chem. Res., 39, pp.161-167 (2000) Lin, C. C., W. T. Liu, and C. S. Tan, “Removal of carbon dioxide by absorption in a rotating packed bed”, Ind. Eng. Chem. Res., 42, pp.2381-2386 (2003) Liu, H. S., C. C. Lin, S. C. Wu, and H. W. Hsu, “Characteristics of a rotating packed bed”, Ind. Eng. Chem. Res., 35, pp.3590-3596 (1996) Lv, J., L. Qiu, and B. Qu, “Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method”, Journal of Crystal Growth, 267, pp.676-684 (2004) McKelvy, M. J., R. Sharma, A. V. G. Chizmeshya, R. W. Carpenter, and K. Streib, “Magnesium hydroxide dehydroxylation: insitu nanoscale observations of lamellar nucleation and growth”, Chem. Mater., 13, pp.921-926 (2001) Nielsen, A. E., “Electrolyte Crystal Growth Mechanisms”, J. Crystal Growth, 67, p289 (1984) Ramshaw, C. and R. H. Mallinson, “Mass Transfer Process”, United States Patent 4383255 (1981) Rothon, R. N. and P. R. Hornsby, ”Flame retardant effects of magnesium hydroxide”, Polymer Degradation and Stability, 54, pp.383-385 (1996) Sawistowski, H., “Flooding velocities in packed columns operating at reduced pressure”, Chem. Eng. Sci., 6, p.138 (1957) Sherwood, T. K., G. H. Shipley, F. A. L. Holloway, “Flooding velocities in packed columns”, Ind. Eng. Chem., 30, p.765 (1938) Sorrell, C. A., ”A guide to field identification: Rocks and Minerals”, p.131&p.151, Golden press, New York (1973) Stankiewicz, A. I. and J. A. Moulijn, “Process intensification: transforming chemical engineering”, Chemical Engineering Process, pp.22-33 (2000) Utamapanya, S., K. J. Klabunde, and J. R. Schlup, “Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide”, Chem. Mater., 3, pp.175-181 (1991) Wang, J. A., O. Novaro, X. Bokhimi, T. López, R. Gómez, J. Navarrete, M. E. Llanos, and E. López-Salinas, “Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO”, Materials Letters, 35, pp.317-323 (1998) Wang, J. A., O. Novaro, X. Bokhimi, T. López, R. Gómez, J. Navarrete, M. E. Llanos, and E. López-Salinas, “Structural defects and acidic and basic sites in sol-gel MgO”, J. Phys. Chem., 101, pp.7448-7451 (1997) Yang, Q., J. Sha, L. Wang, Y. Wang, X. Ma, J. Wang, and D. Yang, “Synthesis of MgO nanotube bundles”, Nanotechnology, 15, pp.1004-1008 (2004) Ye, X., J. Sha, Z. Jiao, and L. Zhang, “Size effect on structure and infrared behavior in nanocrystalline magnesium oxide”, NanoStructured Materials, 8(7), pp.945-951 (1997) Yu, J. C., A. Xu, L. Zhang, R. Song, and L. Wu, “Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates”, J. Phys. Chem. B, 108, pp.64-70 (2004) 宋雲華、陳建銘、陳建峰,「一種納米氫氧化鎂阻燃材料製備新工藝」,中華人民共和國專利,專利號01141787.0,ISSN 1008-4274 余樹楨,「晶體之結構與性質」,第267頁與第277頁,渤海堂文化公司,西元1989年 林佳璋,「高重力場之研究」,博士學位論文,台大化工所,西元1999年 柯清水,「化學化工大辭典」,第584-585頁,西元1998年 財團法人工業技術研究院化學工業研究所,「旋轉吸收機應用研究」,經濟部能源科技研究發展計畫業界合作說明書,西元2002年 張琦、田明、胡偉康、劉燕、陳中強、張立群,「納米氫氧化鎂-橡膠用理想的增強型阻燃劑」,北京化工大學材料科學與工程學院,華瑞公司網站http://www.hray-chem.com,西元2005年 郭文法,「溶膠奈米複合材料」,化工資訊,第50-56頁,西元1998年二月 陳致光,「以逆微乳膠法調控奈微米級碳酸鈣之晶貌」,碩士學位論文,台大化工所,西元2004年 陳昱劭,「旋轉填充床中黏度對質傳影響之研究」,博士學位論文,台大化工所,西元2004年 陳復邦,「以定組成法探討探酸鈣多晶型之形成」,碩士學位論文,台大化工所,西元1995年 陳寶祺,「反應結晶技術與應用」,化工技術,第10卷第9期,第212- 229頁,西元2002年9月 陳寶祺,「氣-液反應結晶之探討」,化工,第49卷第2期,第96-110頁,西元2002年 曾益民與劉文宗,「超重力反應器之原理及應用」,化工技術,第9卷第11期,第12-27頁,西元2001年11月 蕭博元,「鋯鹽在逆微乳膠中水解聚合反應之研究:氧化鋯奈米粒子之合成」,博士學位論文,台大化工所,西元2004年 謝榮忠,「商用磁能防垢器對碳酸鈣結晶的影響」,碩士學位論文,台大化工所,西元2004年 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36610 | - |
| dc.description.abstract | 超重力技術已發展多年,其包含了高重力旋轉填充床與旋轉盤反應器,近年來已經成功應用於蒸餾、吸附等程序。於結晶應用上,其有助於得到微奈米級的超細粉體,對於現今之奈米技術有極大的提升。
氫氧化鎂為耐火材料中常使用的粉體,其用途廣泛,包含醫藥與化妝品工業;其煅燒後的產物為氧化鎂,是最為常見的陶瓷材料之一,常用於防火磚、坩堝等。製備奈米級氫氧化鎂的方法日新月異,許多方法如水熱法、溶膠凝膠法都可使粒子大小達到奈米尺寸,然而此類方法多半高成本、高耗能,發展於工業上有其困難之處;而氧化鎂多半因缺乏粒徑小之前驅物,往往於煅燒後粒子無法達到奈米級的要求。 本研究以超重力系統製備奈米粒子,係利用超重力系統合成奈米級氫氧化鎂,並以之作為氧化鎂的前驅物。實驗方法為在超重力系統中,以氯化鎂與氫氧化鈉進行液-液相反應,於連續式操作下合成氫氧化鎂,並將之煅燒成為氧化鎂,探討系統中各變數包含轉速、濃度、流量、填料等對氫氧化鎂粒子粒徑的影響,以及煅燒溫度對氧化鎂之影響,目標為使兩種粉體粒徑縮小至最小尺寸。 本研究結果發現,在轉速達2000rpm、氯化鎂濃度高達0.83M、氫氧化鈉濃度為1.66M時,於旋轉填充床與旋轉盤反應器中皆可得到長約50-100nm、厚度小於10nm的片狀氫氧化鎂粉體。於旋轉盤反應器中,將兩反應溶液之流量由0.75L/min降至0.28L/min時,以動態光散射儀測得之數目平均粒徑會由143.6nm降至47.5nm,後者之BET比表面積高達77m2/g。使用不鏽鋼網填料之旋轉填充床,發現流量由0.32L/min上升至0.75L/min時,所得之數目平均粒徑會由61.9nm下降至51.8nm;使用馬鞍狀填料時,粒徑與流量無太大關係。 將平均粒徑為47.5nm之片狀氫氧化鎂粉體煅燒至600℃後,可得到立方晶相之氧化鎂,以SEM照片觀察為約50nm之多面體,動態光散射儀測得的平均粒徑約150nm,BET比表面積為32m2/g。 本實驗可得到大小約50nm的氫氧化鎂奈米粒子,而且為片狀結晶,這些粒徑小且具阻氣難燃特性的粒子應用於抗火材料上有很大的優勢;氧化鎂粒子約150nm,作為觸媒或催化劑能有優良的效果。本研究展現了超重力技術適於製備奈米材料的特性,又因為此結晶技術低耗能且易於放大,於工業發展上應有廣大的潛力。 | zh_TW |
| dc.description.abstract | The high-gravity system has been developed for many years. It consists of a high-gravity rotating packed-bed reactor and a spinning disk reactor. In recent years, it has been successfully applied in distillation and adsorption process. In the field of crystal engineering, it can be used to produce nanoparticles.
Magnesium hydroxide is usually used in flame retardant materials, and it can be also used in medicines and cosmetics. It can be calcined to produce magnesium oxide, which is one of the most useful ceramic materials and is usually used in fire-resisting bricks or crucibles. Many methods for synthesis magnesium hydroxide nanoparticles, including hydrothermal method and sol-gel method, have been developed, but they were always high-cost and hard to scale up. Size of magnesium oxide cannot be developed to nano-order because of no suitable nano-sized precursors. The purpose of this research was to synthesize nanoparticles in a high-gravity system. Nanoparticles of magnesium hydroxide were synthesized in a high-gravity system, and used as precursors for magnesium oxide. First, magnesium hydroxide was prepared in the high-gravity system by a continuous, MgCl2-NaOH liquid-liquid phase reaction. Then the product was calcined to produce magnesium oxide. In this research, the effects of operating variables, including rotating speed, reactant concentration, liquid flow rate, and packing material on particle size and shape of magnesium hydroxide nanoparticles was studied. Besides, the effect of calcination temperature on particle size of magnesium oxide was also investigated. The aim of this project was to explore operation conditions for producing Mg(OH)2 and MgO particles as small as possible. In this study, lamellar-like magnesium hydroxide nanoparticles, which is 50-100nm in length, less than 10nm in thickness, can be obtained either in a spinning disk reactor or in a rotating packed-bed reactor, with rotating speed being 2000rpm, MgCl2 concentration being 0.83M, and NaOH concentration being 1.66M. Using a spinning disk reactor, the number mean size of Mg(OH)2 particles measured by a dynamic light scattering analyzer decreases from 143.6nm to 47.5nm when liquid flow rates of MgCl2 and NaOH solutions both decrease from 0.75L/min to 0.28L/min. The BET surface area of 47.5nm Mg(OH)2 particles is 77m2/g. On the other hand, using a rotating packed-bed reactor filled with stainless-steel meshes, Mg(OH)2 particle size decreases from 61.9nm to 51.8nm when liquid flow rates of reactants solutions both increase from 0.32L/min to 0.75L/min. When a rotating packed-bed reactor is filled with ceramic Intalox saddles, liquid flow rate shows no significant effect on the particle size of Mg(OH)2. Polyhedral nanoparticles of magnesium oxide, which is about 50nm observed by a scanning electron microscope, can be obtained by calcination of 47.5nm Mg(OH)2 powder in lamellar shape, using a programmed heating up to 600oC. The number mean size of these MgO particles is about 150nm and the BET surface area of that is 32m2/g. The Mg(OH)2 nanoparticles of lamellar-like and 50nm in equivalent diameter obtained in this research would present great advantages when applied to flame-retardant materials. MgO particles produced in this research are about 150nm for number mean size, which can be used as fine catalyst. This research shows that the high-gravity system is a powerful tool to synthesize nanoparticles. This technology has a great potential in commercialization because of its low energy consumption and its simplicity in scale-up. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:07:43Z (GMT). No. of bitstreams: 1 ntu-94-R92524005-1.pdf: 13340875 bytes, checksum: e27724e1cda0a672ced9f5254e0f3b47 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要I
英文摘要III 目錄VI 圖索引IX 表索引XV 第一章、 緒論1 第二章、 文獻回顧3 2.1 氫氧化鎂與氧化鎂的基本知識與應用3 2.2 製備氫氧化鎂與氧化鎂微奈米粉體的方法10 2.2.1 水熱法10 2.2.2 沉澱法15 2.2.3 溶膠凝膠法19 2.3 其他與氫氧化鎂與氧化鎂相關之研究25 2.4 結晶動力學35 2.4.1 溶解度積與過飽和度35 2.4.2 微觀混合對結晶的影響37 2.5 超重力系統40 2.5.1 超重力系統之誕生40 2.5.2 超重力系統簡介42 2.6 超重力系統的應用45 2.6.1 於結晶上的應用45 2.6.2 於吸附上的應用49 2.6.3 於吸收上的應用50 第三章、 實驗原理與方法53 3.1 實驗藥品53 3.2 實驗儀器55 3.3 分析儀器57 3.4 實驗方法58 3.5 分散方法與粒徑量測62 3.5.1氫氧化鎂粒徑量測62 3.5.2氧化鎂粒徑量測64 第四章、 結果與討論65 4.1 以旋轉盤反應器製備氫氧化鎂之探討65 4.1.1反應物濃度效應65 4.1.2反應物濃度比效應71 4.1.3液體流量效應74 4.1.4轉盤轉速效應79 4.1.5反應物系效應82 4.1.6 添加劑效應85 4.1.7 旋轉盤表面凹槽的影響88 4.2以旋轉填充床反應器製備氫氧化鎂之探討91 4.2.1液體流量效應91 4.2.2 旋轉盤與旋轉填充床之比較96 4.3氫氧化鎂性質分析101 4.4氧化鎂性質分析108 第五章、 結論120 參考文獻122 | |
| dc.language.iso | zh-TW | |
| dc.subject | 旋轉盤反應器 | zh_TW |
| dc.subject | 超重力 | zh_TW |
| dc.subject | 氧化鎂 | zh_TW |
| dc.subject | 氫氧化鎂 | zh_TW |
| dc.subject | 旋轉填充床 | zh_TW |
| dc.subject | high-gravity | en |
| dc.subject | spinning disk reactor | en |
| dc.subject | rotating packed-bed | en |
| dc.subject | magnesium hydroxide | en |
| dc.subject | magnesium oxide | en |
| dc.title | 在超重力系統中製備氫氧化鎂與氧化鎂奈米粉體 | zh_TW |
| dc.title | Synthesis of Magnesium Hydroxide and Oxide Nanoparticles Using a High-gravity System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳寶祺,劉懷勝,施信民 | |
| dc.subject.keyword | 超重力,氧化鎂,氫氧化鎂,旋轉填充床,旋轉盤反應器, | zh_TW |
| dc.subject.keyword | high-gravity,magnesium oxide,magnesium hydroxide,rotating packed-bed,spinning disk reactor, | en |
| dc.relation.page | 128 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-94-1.pdf Restricted Access | 13.03 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
