請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36540完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱樺 | |
| dc.contributor.author | Chih-Wei Chang | en |
| dc.contributor.author | 張志偉 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:04:46Z | - |
| dc.date.available | 2011-08-01 | |
| dc.date.copyright | 2011-08-01 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-20 | |
| dc.identifier.citation | Bibliography
[1] Jorge Ramirez Alfonsin. The Diophantine Frobenius Problem. Oxford Lecture Series in Mathematics and its Application 30. Oxford University Press, 2005. [2] M. F. Atiyah and L. G. Macdonald. Introduction to Commutative Algebra. Addison-Wesley Publishing Company, 1969. [3] D. A. Buchsbaum and D. Eienbud. Algebra structures for finite free resolution. Amer. J.Math., 99:447–485, 1977. [4] David Eisenbud. Commutative Algebra with A View Toward Algebraic Geometry. Graduate texts in mathematics; v.150. Springer-Verlag, 1994. [5] J. Herzog. Generators and relations of abelian semigroups and semigroup rings. Manuscripta Math, 3:175–193, 1970. [6] J. Herzog and E. Kunz. Der Kanonische Modul eines Cohen-Macaulay Rings. Lecture Notes in Mathematics; v.238. Springer, 1971. [7] J. Herzog and E. Kunz. Die werthalbgruppe eines lokalen rings der dimension 1. Sitzungs-berichte der Heidelberger Akademie der Wissenschaften, 2:27–67, 1971. [8] I. Kaplansky. Commutative Rings. University of Chicago Press, 1974. [9] Hideyuki Matsumura. Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, 1986. [10] Richard P. Stanley. Hilbert function of graded algebras. Advances in Mathematics, 28:57–83, 1978. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36540 | - |
| dc.description.abstract | 本論文分兩部分。 第一部分整理必要的知識並證明 Stanley [10] 中的主要結果: 對於Zn≥0中的半群, 其對應的半群環為 Gorenstein 環若且唯若其龐加萊級數是對稱的。
第二部分討論於 Zn≥0中, 對應於 integral closed 半群環的那些半群為對稱的條件。 在 n = 2 的情況下我們可以給出直觀的充要條件。 而 n = 3 的情況若稍微縮小討論的範圍則也有類似的結果。 | zh_TW |
| dc.description.abstract | This thesis is divided into two parts. In the first part, we present necessary preliminaries and prove the main result of Stanley [10] : for a semigroup Γ ⊂ Zn≥0, the semigroup ring k[Γ] is Gorenstein if and only if the Poincare series F(k[Γ],λ) is symmetric.
In the second part, we discuss the symmetricity of a semigroup Γ ⊂ Zn ≥0 such that k[Γ] is integral closed. In the case n = 2, we will characterize symmetricity in several aspects. In the case n = 3, with some additional restrictions, we still have a similar result. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:04:46Z (GMT). No. of bitstreams: 1 ntu-100-R96221026-1.pdf: 393319 bytes, checksum: 0eac9f7d9a9ceeebd045dcfca5b99572 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii 1 Introduction 1 2 Preliminaries 4 2.1 Basics from Homological Algebra............... 4 2.2 Some Facts from Dimension Theorem............. 13 2.3 Regular Sequences and Cohen-Macaulay Rings.... 14 2.4 Regular local ring............................ 19 2.5 Canonical Modules and Gorenstein Rings........ 21 2.6 Hilbert Functions and Gorenstein Property..... 29 3 Main Theorems 35 3.1 Case n = 2.................................... 37 3.2 Case n = 3.................................... 48 References 59 | |
| dc.language.iso | en | |
| dc.subject | 半群環 | zh_TW |
| dc.subject | 半群 | zh_TW |
| dc.subject | 龐加萊級數 | zh_TW |
| dc.subject | 葛倫斯坦環 | zh_TW |
| dc.subject | 貼郵票問題 | zh_TW |
| dc.subject | Gorenstein ring | en |
| dc.subject | semigroup | en |
| dc.subject | Frobenius problem | en |
| dc.subject | semigroup ring | en |
| dc.subject | poincare series | en |
| dc.title | 半群環的 Gorenstein 性質 | zh_TW |
| dc.title | The Gorenstein Property of Semigroup Rings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳其誠,胡守仁 | |
| dc.subject.keyword | 半群,半群環,龐加萊級數,葛倫斯坦環,貼郵票問題, | zh_TW |
| dc.subject.keyword | semigroup,semigroup ring,poincare series,Gorenstein ring,Frobenius problem, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 384.1 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
