請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36528完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yung-Fang Chen) | |
| dc.contributor.author | Chiun-Shing Wang | en |
| dc.contributor.author | 王群雄 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:04:17Z | - |
| dc.date.available | 2005-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-21 | |
| dc.identifier.citation | References(Chapter 1)
1.M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, Annu. Rev. Phys Chem. 41, 477 (1990). 2.J. R. Heath, Science, 270, 1315 (1995). 3.J. Tittel, W. Gohde, F. Koberling, T. Basche, A. Kornowski, H. Weller, and A. Eychmuller, J. Phys. Chem. B 101, 3013 (1997). 4.W. Z. Lee, G. W. Shu, J. C. Wang, J. L. Shen, C. A. Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, Nanotechnology 16, 1 (2005). 5.L. Brus, Appl. Phys. Lett. 53, 465 (1991). 6.C. P. Collier, T. Vossmeyer, and J. R. Heath Annu. Rev. Phys Chem. 49, 371 (1998). 7.M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science 281, 2013 (1998). 8.K. Sungjee, F. Brent, E. H. Jürgen, and B. Moungi, J. Am. Chem. Soc. 125, 11466 (2003). 9.A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, J. Am. Chem. Soc. 112, 1327 (1990). 10.S. T. Lee, J. Haetty, and A. Petrou, Phys. Rev. B 53, 12912 (1996). 11.M. Larsson, A. Elfving, P. O. Holtz, G. V. Hansson, and W. X. Ni, Appl. Phys. Lett. 82, 4785 (2003). 12.Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, J. Appl. Phys. 92, 5810 (2002). References(Chapter 2) 1.L. E. Brus, J. Chem. Phys. 80, 4403 (1984). 2.U. E. H. Laheld, F. B. Pedersen, and P. C. Hemmer, Phys. Rev. B 48, 4659 (1993). 3.U. E. H. Laheld, F. B. Pedersen, and P. C. Hemmer, Phys. Rev. B 52, 2697 (1995). 4.J. R. Lakowicz, Principles of Flurescence Spectroscopy (Academic, New York 1999), p.95. 5.Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996). 6.W. Z. Lee, G. W. Shu, J. C. Wang, J. L. Shen, C. A. Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, Nanotechnology 16, 1 (2005). References(Chapter 3) 1.S. T. Lee, J. Haetty, and A. Petrou, Phys. Rev. B 53, 2912 (1996). 2.M. Larsson, A. Elfving, P. O. Holtz, G. V. Hansson, and W. X. Ni, Appl. Phys. Lett. 82, 4785 (2003). 3.Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, J. Appl. Phys. 92, 5810 (2002). 4.F. Hatami, M. Grundmann, N. N. Ledentsov, F. Heinrichsdorff, R. Heitz, J. Bohrer, and D. Bimberg, Phys. Rev. B 57, 4635 (1998). 5.S. V. Zaitsev, A. A. Maksimov, V. D. Kulakovskii, and I. I. Tartakovskii, J. Appl. Phys. 91, 652 (2002). 6.H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, Appl. Phys. Lett. 76, 3519 (2000). 7.S. W. Lee, K. Hirakawa, and Y. Shimada, Appl. Phys. Lett. 75, 1428 (1999). 8.E. Leobandung, L. Guo, Y. Wang, and S. Y. Chou, Appl. Phys. Lett. 67, 938 (1995). 9.D. Bimberg, and N. Ledentsov, J. Phys. Condens. Matter. 15, R1063 (2003). 10.H. Pettersson, L. Btááh, N. Carlsson, W. Seifert, and L. Samuelson, Appl. Phys. Lett. 79, 78 (2001). 11.a) H. Weller, Adv. Mater. 5, 88, (1993). b) V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature 370, 354 (1994). c) W. C.W. Chan, and S. Nie, Science 281, 2016 (1998). d) A. J. Nozik, Phys. E 14, 115 (2002). 12.Z. A. Peng, X. Peng, J. Am. Chem. Soc. 123, 183 (2001). 13.K. Sungjee, F. Brent, E. H. Jürgen, and B. Moungi, J. Am. Chem. Soc. 125, 11466 (2003). 14.L. E. Brus, J. Chem. Phys. 80, 4403 (1984). 15.J. M. Iannelli, J. Maserjian, B. R. Hancock, P. O. Andersson, and F. J. Grunthaner, Appl. Phys. Lett. 54, 301 (1989). 16.C. Weisbuch, B. Vinter, Quantum Semiconductor Structures (Academic, Boston, 1991), p. 20. 17.U. E. H. Laheld, F. B. Pedersen, and P. C. Hemmer, Phys. Rev. B 48, 4659 (1993). 18.U. E. H. Laheld, F. B. Pedersen, and P. C. Hemmer, Phys. Rev. B 52, 2697 (1995). 19.Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. Zheng, and J. Z. Xu, Phys. Rev. B 54, 11528 (1996). 20.R. Seguin, S. Rodt, A. S trittmatter, L. Reimann, T. Bartel, A. Hoffmann, D. Bimberg, E. Hahn, and D. Gerthsen, Appl. Phys. Lett. 84, 4023 (2004). References(Chapter 4) 1.S. T. Lee, J. Haetty, and A. Petrou, Phys. Rev. B 53, 12912 (1996). 2.D. Bimberg, M. Groundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (New Yourk : Wiley, 1998) 3.M. Schlamp, X. Peng, and A. P. Alivisatos, J. Appl. Phys. 82, 5837 (1997). 4.B.O. Dabbousi, M. G.. Bawendi, O. Onitsuka, and M. F. Rubner, Appl. Phys. Lett. 66, 1316 (1995). 5.V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature (London) 370, 354 (1994) 6.C. P. Collier, T. Vossmeyer, and J. R. Heath, Annu. Rev. Phys. Chem. 49, 371 (1998). 7.V. I. Klimov et al., Science 290, 314 (2000). 8.M. Bruchez, Jr. et al., Science 281, 2013 (1998). 9.C. Landes, C. Burda, and M. A. El-Sayed, J. Phys. Chem. B 105, 2981 (2001). 10.X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao Nano Lett. 3, 1103 (2003). 11.X. Wang, J. Zhang, A. Nazzal, M. Darangh, and M. Xiao Appl. Phys. Lett. 81, 4829 (2002). 12.A. Javier, D. Magana, T. Jennings, and G. F. Strouse, Appl. Phys. Lett. 83, 1423 (2003). 13.W. Z. Lee, G. W. Shu, J. C. Wang, J. L. Shen, C. A. Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, Nanotechnology 16, 1 (2005). 14.A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, J. Am. Chem. Soc. 112, 1327 (1990). 15.M. A. Hines, P. J. Guyot-Sionnest, Phys. Chem. 100, 468 (1996). 16.B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B, 101, 9463 (1997). 17.J. Bellessa, V. Voliotis, R. Grousson, X. L. Wang, M. Ogura, and H. Matsuhata, Phys. Rev. B 58, 9933 (1998). 18.V. A. Fonoberov, and A. A. Balandin, Phys. Rev. B 70, 195410-1 (2004). 19.Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996). 20.C. Gourdon, and P. Lavallard, Phys. Status Solid B 153, 641 (1989). 21.E. Cohn, and M. D. Sturge, Phys. Rev. B 25, 3828 (1982). 22.M. Strassburg, M. Dworzak, H. Born, R. Heitz, and A. Hoffmann, Appl. Phys.Lett. 80, 473 (2002). 23.H. Gotoh, H. Ando, T. Takagahara, H. Kamada, A. Chavez- Pirson, and J. Temmyo, Jpn. J. Appl. Phys. 36, 4204 (1997). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36528 | - |
| dc.description.abstract | In this thesis we report two studies include optical properties of CdTe/CdSe core-shell type II quantum dots and time-resolved photoluminescence (PL) in CdSe/ZnS core-shell type I quantum dots. The former and later results are obtained from photoluminescence, photoluminescence excitation measurement and time-resolved PL measurement respectively. Quite interesting results provide useful results for the enhancement of our understanding and application in these materials.
I.Optical properties of CdTe/CdSe core-shell type II quantum dots We report investigation of optical properties of type-II CdTe/CdSe core-shell quantum dots. Several peculiar behaviors different from those of type I band alignment have been observed. In the measurement of power dependence of PL, we observe that the peak energy increases with the third root of excitation intensity. The integrated PL intensity varies with excitation intensity as a linear relation. These observation can be interpreted in terms of the band bending effect due to the spatially phoexcited carriers in a type-II band alignment. In addition, we get the exciton binding energy about 17.5 meV, which is much larger than that of quantum wells, but comparable with the theoretical prediction of the exciton energy of quantum dots. II.Relaxation dynamics of luminescence in CdSe/ZnS core-shell type I quantum dots We report investigation of PL dynamics of CdSe/ZnS core-shell type-I quantum dots. The PL intensity shows a biexponential decay behavior, which has been observed. We find that the radiactive recombination processes consist of a fast decay (~1 ns) and slow decay component (~10 ns). Due to the photon energy and temperature dependence of decay time experiments, we suggest that the fast and slow decay times involve recombination process of the photoinduced charged exciton and the band edge excitons. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:04:17Z (GMT). No. of bitstreams: 1 ntu-94-R92222047-1.pdf: 533719 bytes, checksum: 9ef1b1e903c894bf700eb7d970444bf5 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 1.Introduction......................................1
2.Theorectical Background...........................5 2.1Photoluminescence................................5 2.2.1 Introduction..................................5 2.2.2 Band structure................................5 2.2.3 Calculation of the effective bandgap of type I QDs.................................................6 2.2.4 Calculation of the exciton binding energy of type II QDs.........................................7 2.2.5 Several recombination processes...............9 2.2.6 PL Apparatus.................................10 2.2 Time-domain Lifetime...........................15 2.2.1 Introduction.................................15 2.2.2 Meaning of the Lifetime or Decay Time........15 2.2.3 Lifetimes of band edge excitons in CdSe QDs..17 2.2.4 Time Resolved PL Apparatus...................20 3.Optical properties of CdTe/CdSe core-shell type II quantum dots.......................................23 3.1 Introduction...................................23 3.2 Sample preparation.............................25 3.3 Experiment.....................................27 3.4 Results and discussion.........................28 3.5 Summary........................................43 4.Relaxation dynamics of luminescence in CdSe/ZnS core-shell type I quantum dots..........................46 4.1 Introduction...................................46 4.2 Sample preparation.............................48 4.3 Experiment.....................................50 4.4 Results and discussion.........................51 4.5 Summary........................................63 5.Conclusion.......................................66 | |
| dc.language.iso | en | |
| dc.subject | 化學溶膠法 | zh_TW |
| dc.subject | 二六族 | zh_TW |
| dc.subject | 核殼結構 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 鍗化鎘 | zh_TW |
| dc.subject | 硒化鎘 | zh_TW |
| dc.subject | 硫化鋅 | zh_TW |
| dc.subject | II-VI | en |
| dc.subject | ZnS | en |
| dc.subject | quantum dots | en |
| dc.subject | chemical colloidal | en |
| dc.subject | core-shell | en |
| dc.subject | CdSe | en |
| dc.subject | CdTe | en |
| dc.title | 二六族核殼結構量子點之光學特性研究 | zh_TW |
| dc.title | Studies of Optical Properties of II-VI Core-shell Quantum Dots | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 沈志霖,林泰源 | |
| dc.subject.keyword | 二六族,核殼結構,化學溶膠法,量子點,鍗化鎘,硒化鎘,硫化鋅, | zh_TW |
| dc.subject.keyword | II-VI,core-shell,chemical colloidal,quantum dots,CdTe,CdSe,ZnS, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 521.21 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
