Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36528
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yung-Fang Chen)
dc.contributor.authorChiun-Shing Wangen
dc.contributor.author王群雄zh_TW
dc.date.accessioned2021-06-13T08:04:17Z-
dc.date.available2005-07-26
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-07-21
dc.identifier.citationReferences(Chapter 1)
1.M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, Annu.
Rev. Phys Chem. 41, 477 (1990).
2.J. R. Heath, Science, 270, 1315 (1995).
3.J. Tittel, W. Gohde, F. Koberling, T. Basche, A.
Kornowski, H. Weller, and A. Eychmuller, J. Phys. Chem.
B 101, 3013 (1997).
4.W. Z. Lee, G. W. Shu, J. C. Wang, J. L. Shen, C. A. Lin,
W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y.
C. Lee, Nanotechnology 16, 1 (2005).
5.L. Brus, Appl. Phys. Lett. 53, 465 (1991).
6.C. P. Collier, T. Vossmeyer, and J. R. Heath Annu. Rev.
Phys Chem. 49, 371 (1998).
7.M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P.
Alivisatos, Science 281, 2013 (1998).
8.K. Sungjee, F. Brent, E. H. Jürgen, and B. Moungi, J.
Am. Chem. Soc. 125, 11466 (2003).
9.A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L.
Steigerwald, P. J. Carroll, and L. E. Brus, J. Am. Chem.
Soc. 112, 1327 (1990).
10.S. T. Lee, J. Haetty, and A. Petrou, Phys. Rev. B 53,
12912 (1996).
11.M. Larsson, A. Elfving, P. O. Holtz, G. V. Hansson, and
W. X. Ni, Appl. Phys. Lett. 82, 4785 (2003).
12.Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, J.
Appl. Phys. 92, 5810 (2002).
References(Chapter 2)
1.L. E. Brus, J. Chem. Phys. 80, 4403 (1984).
2.U. E. H. Laheld, F. B. Pedersen, and P. C. Hemmer, Phys.
Rev. B 48, 4659 (1993).
3.U. E. H. Laheld, F. B. Pedersen, and P. C. Hemmer, Phys.
Rev. B 52, 2697 (1995).
4.J. R. Lakowicz, Principles of Flurescence Spectroscopy
(Academic, New York 1999), p.95.
5.Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris,
and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
6.W. Z. Lee, G. W. Shu, J. C. Wang, J. L. Shen, C. A. Lin,
W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, Nanotechnology 16, 1 (2005).
References(Chapter 3)
1.S. T. Lee, J. Haetty, and A. Petrou, Phys. Rev. B 53,
2912 (1996).
2.M. Larsson, A. Elfving, P. O. Holtz, G. V. Hansson, and
W. X. Ni, Appl. Phys. Lett. 82, 4785 (2003).
3.Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, J. Appl.
Phys. 92, 5810 (2002).
4.F. Hatami, M. Grundmann, N. N. Ledentsov, F.
Heinrichsdorff, R. Heitz, J. Bohrer, and D. Bimberg,
Phys. Rev. B 57, 4635 (1998).
5.S. V. Zaitsev, A. A. Maksimov, V. D. Kulakovskii, and I.
I. Tartakovskii, J. Appl. Phys. 91, 652 (2002).
6.H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T.
Ho, and G. S. Solomon, Appl. Phys. Lett. 76, 3519 (2000).
7.S. W. Lee, K. Hirakawa, and Y. Shimada, Appl. Phys.
Lett. 75, 1428 (1999).
8.E. Leobandung, L. Guo, Y. Wang, and S. Y. Chou, Appl.
Phys. Lett. 67, 938 (1995).
9.D. Bimberg, and N. Ledentsov, J. Phys. Condens. Matter.
15, R1063 (2003).
10.H. Pettersson, L. Btááh, N. Carlsson, W. Seifert, and
L. Samuelson, Appl. Phys. Lett. 79, 78 (2001).
11.a) H. Weller, Adv. Mater. 5, 88, (1993). b) V. L.
Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature
370, 354 (1994). c) W. C.W. Chan, and S. Nie, Science
281, 2016 (1998). d) A. J. Nozik, Phys. E 14, 115
(2002).
12.Z. A. Peng, X. Peng, J. Am. Chem. Soc. 123, 183 (2001).
13.K. Sungjee, F. Brent, E. H. Jürgen, and B. Moungi, J.
Am. Chem. Soc. 125, 11466 (2003).
14.L. E. Brus, J. Chem. Phys. 80, 4403 (1984).
15.J. M. Iannelli, J. Maserjian, B. R. Hancock, P. O.
Andersson, and F. J. Grunthaner, Appl. Phys. Lett. 54,
301 (1989).
16.C. Weisbuch, B. Vinter, Quantum Semiconductor
Structures (Academic, Boston, 1991), p. 20.
17.U. E. H. Laheld, F. B. Pedersen, and P. C. Hemmer,
Phys. Rev. B 48, 4659 (1993).
18.U. E. H. Laheld, F. B. Pedersen, and P. C. Hemmer,
Phys. Rev. B 52, 2697 (1995).
19.Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. Zheng, and J. Z. Xu,
Phys. Rev. B 54, 11528 (1996).
20.R. Seguin, S. Rodt, A. S trittmatter, L. Reimann, T.
Bartel, A. Hoffmann, D. Bimberg, E. Hahn, and D.
Gerthsen, Appl. Phys. Lett. 84, 4023 (2004).
References(Chapter 4)
1.S. T. Lee, J. Haetty, and A. Petrou, Phys. Rev. B 53,
12912 (1996).
2.D. Bimberg, M. Groundmann, and N. N. Ledentsov, Quantum
Dot Heterostructures (New Yourk : Wiley, 1998)
3.M. Schlamp, X. Peng, and A. P. Alivisatos, J. Appl.
Phys. 82, 5837 (1997).
4.B.O. Dabbousi, M. G.. Bawendi, O. Onitsuka, and M. F.
Rubner, Appl. Phys. Lett. 66, 1316 (1995).
5.V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos,
Nature (London) 370, 354 (1994)
6.C. P. Collier, T. Vossmeyer, and J. R. Heath, Annu. Rev.
Phys. Chem. 49, 371 (1998).
7.V. I. Klimov et al., Science 290, 314 (2000).
8.M. Bruchez, Jr. et al., Science 281, 2013 (1998).
9.C. Landes, C. Burda, and M. A. El-Sayed, J. Phys. Chem.
B 105, 2981 (2001).
10.X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao Nano
Lett. 3, 1103 (2003).
11.X. Wang, J. Zhang, A. Nazzal, M. Darangh, and M. Xiao
Appl. Phys. Lett. 81, 4829 (2002).
12.A. Javier, D. Magana, T. Jennings, and G. F. Strouse,
Appl. Phys. Lett. 83, 1423 (2003).
13.W. Z. Lee, G. W. Shu, J. C. Wang, J. L. Shen, C. A.
Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu,
and Y. C. Lee, Nanotechnology 16, 1 (2005).
14.A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M.
L. Steigerwald, P. J. Carroll, and L. E. Brus, J. Am.
Chem. Soc. 112, 1327 (1990).
15.M. A. Hines, P. J. Guyot-Sionnest, Phys. Chem. 100, 468
(1996).
16.B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R.
Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G.
Bawendi, J. Phys. Chem. B, 101, 9463 (1997).
17.J. Bellessa, V. Voliotis, R. Grousson, X. L. Wang, M.
Ogura, and H. Matsuhata, Phys. Rev. B 58, 9933 (1998).
18.V. A. Fonoberov, and A. A. Balandin, Phys. Rev. B 70,
195410-1 (2004).
19.Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J.
Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
20.C. Gourdon, and P. Lavallard, Phys. Status Solid B 153,
641 (1989).
21.E. Cohn, and M. D. Sturge, Phys. Rev. B 25, 3828 (1982).
22.M. Strassburg, M. Dworzak, H. Born, R. Heitz, and A.
Hoffmann, Appl. Phys.Lett. 80, 473 (2002).
23.H. Gotoh, H. Ando, T. Takagahara, H. Kamada, A. Chavez-
Pirson, and J. Temmyo, Jpn. J. Appl. Phys. 36, 4204
(1997).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36528-
dc.description.abstractIn this thesis we report two studies include optical properties of CdTe/CdSe core-shell type II quantum dots and time-resolved photoluminescence (PL) in CdSe/ZnS core-shell type I quantum dots. The former and later results are obtained from photoluminescence, photoluminescence excitation measurement and time-resolved PL measurement respectively. Quite interesting results provide useful results for the enhancement of our understanding and application in these materials.
I.Optical properties of CdTe/CdSe core-shell type II quantum dots
We report investigation of optical properties of type-II CdTe/CdSe core-shell quantum dots. Several peculiar behaviors different from those of type I band alignment have been observed. In the measurement of power dependence of PL, we observe that the peak energy increases with the third root of excitation intensity. The integrated PL intensity varies with excitation intensity as a linear relation. These observation can be interpreted in terms of the band bending effect due to the spatially phoexcited carriers in a type-II band alignment. In addition, we get the exciton binding energy about 17.5 meV, which is much larger than that of quantum wells, but comparable with the theoretical prediction of the exciton energy of quantum dots.
II.Relaxation dynamics of luminescence in CdSe/ZnS core-shell type I quantum dots
We report investigation of PL dynamics of CdSe/ZnS core-shell type-I quantum dots. The PL intensity shows a biexponential decay behavior, which has been observed. We find that the radiactive recombination processes consist of a fast decay (~1 ns) and slow decay component (~10 ns). Due to the photon energy and temperature dependence of decay time experiments, we suggest that the fast and slow decay times involve recombination process of the photoinduced charged exciton and the band edge excitons.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:04:17Z (GMT). No. of bitstreams: 1
ntu-94-R92222047-1.pdf: 533719 bytes, checksum: 9ef1b1e903c894bf700eb7d970444bf5 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents1.Introduction......................................1
2.Theorectical Background...........................5
2.1Photoluminescence................................5
2.2.1 Introduction..................................5
2.2.2 Band structure................................5
2.2.3 Calculation of the effective bandgap of type I QDs.................................................6
2.2.4 Calculation of the exciton binding energy of
type II QDs.........................................7
2.2.5 Several recombination processes...............9
2.2.6 PL Apparatus.................................10
2.2 Time-domain Lifetime...........................15
2.2.1 Introduction.................................15
2.2.2 Meaning of the Lifetime or Decay Time........15
2.2.3 Lifetimes of band edge excitons in CdSe QDs..17
2.2.4 Time Resolved PL Apparatus...................20
3.Optical properties of CdTe/CdSe core-shell type II quantum dots.......................................23
3.1 Introduction...................................23
3.2 Sample preparation.............................25
3.3 Experiment.....................................27
3.4 Results and discussion.........................28
3.5 Summary........................................43
4.Relaxation dynamics of luminescence in CdSe/ZnS core-shell type I quantum dots..........................46
4.1 Introduction...................................46
4.2 Sample preparation.............................48
4.3 Experiment.....................................50
4.4 Results and discussion.........................51
4.5 Summary........................................63
5.Conclusion.......................................66
dc.language.isoen
dc.subject化學溶膠法zh_TW
dc.subject二六族zh_TW
dc.subject核殼結構zh_TW
dc.subject量子點zh_TW
dc.subject鍗化鎘zh_TW
dc.subject硒化鎘zh_TW
dc.subject硫化鋅zh_TW
dc.subjectII-VIen
dc.subjectZnSen
dc.subjectquantum dotsen
dc.subjectchemical colloidalen
dc.subjectcore-shellen
dc.subjectCdSeen
dc.subjectCdTeen
dc.title二六族核殼結構量子點之光學特性研究zh_TW
dc.titleStudies of Optical Properties of II-VI Core-shell Quantum Dotsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈志霖,林泰源
dc.subject.keyword二六族,核殼結構,化學溶膠法,量子點,鍗化鎘,硒化鎘,硫化鋅,zh_TW
dc.subject.keywordII-VI,core-shell,chemical colloidal,quantum dots,CdTe,CdSe,ZnS,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2005-07-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
521.21 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved