請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36502完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張慶源 | |
| dc.contributor.author | Hsiao-Chuan | en |
| dc.contributor.author | 王曉娟 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:03:16Z | - |
| dc.date.available | 2007-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-21 | |
| dc.identifier.citation | Chang, C .F., C.Y. Chang, and K. H. Chen, “Adsorption of Naphthalene on Zeolite from Aqueous Solution,” J. Colloid and Interface Sci., 277, 29-34 (2004).
Cheung, C. W., J. F. Porter and G. Mckay, ”Sorption Kinetic Analysis for the Removal of Cadmium Ions from Effluent Using Bone Char,” Wat. Res., 35(3), 605 (2001). Dixon, J. B. and S. B. Weed, Minerals in Soil Environments, 2nd ed., Soil Science Society of America Book Series, Madison, Wisconsin, USA (1989). Ertl, G. H. KÖzinger, and J. Weitkamp, Preparation of Solid Catalysts, Wiley, Germany, (1999). Gould R. F. “Equilibrium Concepts in Natural Water System,.”, 1967. Huang, C. J. and J. C. Liu, “ Precipitate Flotation of Fluoride-Containing Wastewater from a Semiconductor Manufacturer,” Wat. Res., 33(16), 3404-3412 (1999). Hingston, F. J., A. M. Posner and J. P. Quirk, “Anion Adsorption by Geothite and Gibbsite: I. The Role of the Porton in Determining Adsorption Envelopes,” J. Soil Sci., 23, 177 (1972). KÖzinger, E. G. H. and J. Weitkamp, Preparation of Solid Catalysts, Wiley, Germany (1999). Morel, F. M., M. and J. J. Hering, Principles and Applications of Aquatic Chemistry, Wiley-Interscience, New York (1993). Nordin, J. P., D. J. Sullivan, B. L. Phillips and W. H. Casey, “Mechanisms for Fluoride-promoted Dissolution of Bayerite [ β-Al(OH)3(S)] and Beohmite [γ-AlOOH]: F-NMR Spectroscopy and Aqueous Surface Chemistry,” Geochimica et Cosmochimica Acta, 63(21), 3515-3524 (1999). Reyes Bahena, J.L., A. Robledo Cabrera, A. Lόpez Valdivieso and R. Herrera Urbina, ”Fluoride Adsorption onto α-Al2O3 and Its Effect on the Zeta Potential at the Alumina-aqueous Electrolyte Interface,” Separation Science and Technology, 37(8), 1973-1987 (2002). Sawyer, C. N., P. L. McCarty and G. F. Parkin, Chemistry for Environmental Engineering and Science, 5th, McGraw-Hill, New York (2003). Sillen, L.G. and A. E. Martell, Stabillty Constants, Soec. Publs., Chemical Society, London, 25 ( 1971). Sigg O. and W. Stumm, ” The Interaction of Anions and Weak Acids with the Hydrous Goethite (α-FeOOH) Surface,”Colloids and Surfaces, 101-117(1981). Stumm W., Chemistry of the Solid-Water Interface,Wiley, New York ( 1992). Schwarz, J.A. C. T. Driscol and A. K. Bhanot , “The Zero Point of Charge of Silica- Alumina Oxide Suspensions,” J. Colloid and Interface Sci., 97, 55 (1984). Tsai, W.T., C.Y. Chang, C.Y. Ho and L.Y. Chen, “Adsorption Properties and Breakthrough Model of 1,1-Dichloro-1-fluoroethane (HCFC-141b) on Activated Carbon,” J. Hazardous Materials, 69, 53-66 (1999a). Tsai, W.T., C.Y. Chang and C.Y. Ho, “Simplified Description of Adsorption Breakthrough Curves of 1,1-Dichloro-1-fluoroethane (HCFC-141b) on Activated Carbon with Temperature Effect,” J. Colloid and Interface Sci., 214, 455-458 (1999b). Choi, W. W. and K. Y. Chen, “ The Removal of Fluoride from Waters by Adsorption,” J. AWWA, 562-569 (1979). Iler, R. K., The Chemistry of Silica-solubility, Polymerization, Colloid and Surface Prosperities, and, Biochemistry, Wiley, New York, (1979). Werner Stumm, Aquatic surface Chemistry : Chemical Processes at the Particle-water Interface, John Wiley & Sons, Inc.(1987). Wang, C. M., “High Green Compact Strength of coated Si3N4 powder,” J. Mater. Sci. Lett., 14, 1256, (1995). Wang, Y.F., C. Bryan, H. F. Xu, P. Pohl, Y. Yang and C. J. Brinker, ”Interface Chemistry of Nanostructured Materials: Ion Adsorption on Mesoporous Alumina,” J. Colloid and Interface Sci., 254, 23-30 (2002). Yoon, Y .H. and J. H. Nelson, “ Application of Gas Adsorption Kinetics –Ι. A Theoretical Model for Respirator Cartridge Service Life,” Am. Ind. Hyg. Assoc. J., 45, 509 (1984a). Yoon, Y .H., and J. H. Nelson, “ Application of Gas Adsorption Kinetics –II. A Theoretical Model for Respirator Cartridge Service Life and Its Practical Applications,” Am. Ind. Hyg. Assoc. J., 45, 517 (1984b). Young Y .H. and H. M. Chiou, “ The Al Sorption of Fluoride Ion from Aqueous Solution by Activated Alumina,” Water, Air, and Soil Pollution, 133, 349-360 (2002). Garrison Sposito和王明光,「鋁的環境化學」 ( The Environmental Chemistry of Aluminum, 2nd , CRC Press, Inc.,(1996). 吳忠信,「二價陰離子在氧化鋁表面之吸附研究」, 國立臺灣大學環境工程學研究所博士論文 (1999)。 李其欣 ,「氧化鋁覆膜石英砂吸附亞錳離子之研究」,國立臺灣大學環境工程學研究所碩士論文 (1996)。 林彥文,「Fe3O4-SiO2 奈米核-殼 結構粒子之製備與磁性之研究」,東海大學物理系碩士論文 (2003)。 林珮萱,「以商業用及新穎奈米磁性氧化鋁吸附」,國立臺灣大學環境工程學研究所碩士論文 (2004)。 邱惠美,「以吸附式程序處理含氟水溶液反應行為之研究」,國立台灣科技大學化學工程技術研究所碩士論文 (1997)。 徐志明,「以三層模式模擬氧化鋁表面競爭吸附行為之研究」,雲林科技大學環境與安全工程系碩士論文 (1992)。 張俊彥、鄭晃忠 ,「積體電路製程及設備技術手冊」,中華民國經濟部技術處 (1997)。 張冠東、官月平、單國彬、安振濤、劉會洲,「奈米Fe3O4 顆粒的表面包覆及其在磁性氧化鋁載體製備中的應用」,過程工程學報 (中國),2(4),319 (2002)。 陳維政、黃靖修,「環境化學精要編」,九華出版社,台北 (1995)。 陳其華、李弘,「以LSR 處理回收半導體業全氟化物衍生含氟廢液實例介紹」,2001產業環保工程實務研討會論文集(2001)。 http://www.niea.gov.tw/analysis/publish/month/41/41th4-4.htm, 94/4/26 下載 “歐盟將於2004年全面實施防火劑禁令,” http://www.tdctrade.com/alert/calert/ceu0305.htm, 94/6/03下載。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36502 | - |
| dc.description.abstract | 本研究以商業用的活性氧化鋁(γ-Al2O3)和以溶膠凝膠法(sol-gel method)合成之修飾磁性氧化鋁(modified magnetic alumina via sol-gel method, MMASG)兩種鋁型吸附劑吸附處理含F-、Cl-、Br-、NO3-和SO42-水溶液。γ-Al2O3活化時採用0.01 N NaOH 再生及3.16×10-4 N HNO3 (稱為γ-Al2O3-N) 或HClO4 (稱為γ-Al2O3-P)中和至pH值等於4。究內容包含了吸附劑之物理化學特性鑑定分析、等溫吸附行為、完全攪拌槽吸附動力分析、小型管柱吸附動力實驗等。此外,亦針對操作因子如pH值和陰離子初始濃度等對處理效果之影響進行探討。
以共沉澱法製備奈米級Fe3O4超順磁性顆粒;並以緩慢加酸法(參考林(2004) 之合成方法進行部份修正)於Fe3O4表面包覆SiO2,得到SiO2/Fe3O4磁性載體;再以溶膠凝膠法於磁性載體表面合成氧化鋁,可製備得修飾磁性氧化鋁吸附劑。Fe3O4、磁性載體及MMASG之飽和磁化強度分別為59.24、8.5和8.269 emu/g,皆具有超順磁性。X射線繞射(x-ray diffraction, XRD) 之鑑定結果顯示MMASG表面之鋁氧化物為三羥氧化鋁(bayerite)結構。 等溫吸附試驗之結果顯示以Langmuir與Freundlich等溫吸附方程式皆能有效的描述氧化鋁 (γ-Al2O3-N)、MASG (林(2004)所合成之磁性氧化鋁)和MMASG (本研究所合成之修飾磁性氧化鋁)等三種吸附劑吸附強鍵結的氟離子在鋁表面的行為。單就單層飽和吸附量(qL)而言,MMASG為本研究中所使用三種吸附劑中對氟離子吸附效果最佳者。對於弱建結之Cl-、Br-、NO3-和SO42- 離子,Langmuir等溫吸附方程式也可描述良好。 假性二階動力程序(pseudo-second-order equation)及Elovich rate equation可有效的模擬γ-Al2O3-P 和MMASG於完全混合反應槽(completely stirred tank reactor, CSTR)中對含F-、Cl-、Br-、NO3-和SO42-離子之吸附動力。 小型γ-Al2O3-P管柱吸附貫穿實驗以 Yoon and Nelson 方程式描述半導體產業廢水中的個別五種單離子,皆有良好的適用性。所求得之參數值期望可用來評估應用於實廠廢水之吸附行為。以小型管柱吸附貫穿實驗模擬半導體實廠廢水(實驗條件為配製含 F- 、Cl-、Br-、NO3- 和 SO42-值為 54、2.2、1.1、10 和2 mg/L而初始pH值為4之水溶液)之吸附去除效果。結果顯示γ-Al2O3-P吸附可有效去除半導體廢水中之氟離子;對於弱鍵結之陰離子(如:Cl-、Br-及NO3-)而言,其吸附去除效果較差。則須進一步評估。 雖然MMASG因為顆粒很小不適用於管柱吸附,但由於MMASG與γ-Al2O3-N之等溫吸附平衡參數值比較,顯示MMASG對於強鍵結之氟離子及弱鍵結之陰離子之去除效果與γ-Al2O3-N在定性上一致。 | zh_TW |
| dc.description.abstract | The main species of the aged scrubbing solution in the semiconductor manufacturing industries are F-, Cl-, Br-, NO3- and SO42- with concentrations of about 54, 2.2, 1.5, 10 and2 mg/L respectively. The pH value of the solution is about 3.6. Therefore, on the basis of the results obtained from Lin (2004), the adsorption process applied in the removal of anions, including F-, Cl-, Br-, NO3- and SO42-, from the synthesized aqueous solutions was investigated in this study.
Commercial activated alumina activated using 0.01 N NaOH followed by 3.16×10-4 N HNO3 (noted as γ-Al2O3-N) or HClO4 (denoted as γ-Al2O3-P) and modified magnetic alumina adsorbent, which was synthesized employing sol-gel method (called as MMASG), were used as the alumina-type adsorbents. The physicochemical characteristics of two adsorbents and factors affecting the adsorption equilibrium and kinetics were further examined in the study. The Langmuir and Freundlich isotherms were successfully used to predict the adsorption equilibrium behavior of the target anions onto γ-Al2O3-N and MMASG. The monolayer equilibrium adsorption capacity (qL) of MMASG is higher than that of γ-Al2O3-N. Besides, MMASG which was prepared by Fe3O4 coated with SiO2 and sequentially synthesized by sol-gel method in this study, can properly be applied in the removal of the said anions from solutions. Regarding the adsorption kinetics of the target anions from solutions, among the kinetic models tested (e.g. pseudo-first-order equation, pseudo-second-order equation and Elovich rate equation), both the pseudo-second-order equation and Elovich rate equation can well predict the adsorption kinetics of the said anions onto γ-Al2O3-P and MMASG in a completely stirred tank reactor (CSTR). The removal of anions by the commercial activated Al2O3-P was also carried out in a fixed-bed adsorber. The operating conditions were at pH value of 4 with various inlet concentrations for the fed anionic solutions. In addition, the adsorption patterns of anions can be divided into two types: inner-sphere (“chemical bond”) adsorption, such as F- and SO42-, and outer-sphere complex (ion pair) adsorption, such as Cl-, Br- and NO3-. Besides, Yoon and Nelson equation for breakthrough modeling can well predict the adsorption kinetics of anions onto γ-Al2O3-P in a fixed-bed adsorber. This study takes into account for the practical data of the aged scrubbing solution in the semiconductor manufacturing industries. The results indicate that γ-Al2O3-P and MMASG possess proper potential as the adsorbents for the application of adsorption process in the defluoridation from aged scrubbing solution. As for the weak anions such as Cl-, Br- and NO3-, the applicabilities of the γ-Al2O3-P and MMASG are moderate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:03:16Z (GMT). No. of bitstreams: 1 ntu-94-R92541113-1.pdf: 2562079 bytes, checksum: a9bdd50407df6918d592276703932658 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 頁 次
中文摘要 ………………………………………………………… i 英文摘要 ………………………………………………………… iii 目錄 ………………………………………………………… iv 表目錄 ………………………………………………………… viii 圖目錄 ………………………………………………………… xii 符號說明 ………………………………………………………… xvi 第一章 緒論…………………………………………………… 1 1.1 研究背景……………………………………………… 1 1.2 研究目的……………………………………………… 3 第二章 文獻回顧……………………………………………… 5 2.1 積體電路製程及半導體製造廠排氣洗滌系統(local scrubber reclaim system, LSR)……………… 5 2.2 LSR廢水所含各離子的簡介………………………… 9 2.3 鋁離子之錯合水化學………………………………… 11 2.4 鋁氧化物……………………………………………… 16 2.4-1 鋁氧化物表面化學特性……………………………… 16 2.4-2 鋁氧化物之水化學…………………………………… 20 2.5 吸附理論……………………………………………… 23 2.5-1 基本理論……………………………………………… 23 2.5-2 吸附基本理論………………………………………… 27 2.5-3 等溫吸附方程式……………………………………… 27 2.5-4 吸附動力…………………………………………… 30 2.5-5 影響吸附之因素……………………………………… 34 2.6 磁性技術……………………………………………… 37 2.6-1 磁性顆粒及磁性分離………………………………… 37 2.6-2 磁性載體製備與應用………………………………… 37 第三章 實驗設備與研究方法………………………………… 43 3.1 藥品…………………………………………………… 43 3.2 設備…………………………………………………… 45 3.2-1 管柱吸附動力試驗系統設備 45 3.2-2 磁性吸附劑合成設備 45 3.2-3 物理化學特性分析儀器 48 3.2-4 其他設備 48 3.3 實驗步驟……………………………………………… 49 3.3-1 吸附劑的製(準)備與物理化學鑑定………………… 49 3.3-2 氧化鋁的前處理……………………………………… 53 3.3-3 吸附劑之物理化學特性分析………………………… 53 3.3-4 等溫吸附實驗………………………………………… 59 3.3-5 動力管柱試驗………………………………………… 62 第四章 結果與討論…………………………………………… 64 4.1 吸附劑之基本性質…………………………………… 64 4.1-1 商業用氧化鋁………………………………………… 64 4.1-2 超順磁性活性氧化鋁………………………………… 70 4.2 陰離子於活性氧化鋁之吸附行為…………………… 89 4.2-1 前處理之影響………………………………………… 89 4.2-2 pH對吸附行為之影響……………………………… 91 4.2-3 等溫吸附……………………………………………… 91 4.2-4 陰離子之吸附行為…………………………………… 96 4.2-5 完全攪拌反應槽之吸附動力………………………… 107 4.2-6 管柱之吸附動力 ………………………………… 120 4.2-7 合成實廠廢水進行模擬 129 4.3 超順磁性活性氧化鋁對陰離子之吸附行為………… 133 4.3-1 pH對等溫吸附行為之影響………………………… 133 4.3-2 吸附劑之等溫吸附………………………………… 133 4.3-3 完全攪拌反應槽之吸附動力………………………… 136 4.3-4 合成實廠廢水進行模擬 150 4.4 不同吸附劑吸附容量之比較………………………… 152 4.4-1 pH對吸附行為之影響……………………………… 152 4.4-2 於定pH值下等溫吸附容量之比較………………… 152 第五章 結論與建議…………………………………………… 158 5.1 結論…………………………………………………… 158 5.2 建議…………………………………………………… 162 參考文獻 ………………………………………………………… 163 附錄 167 附錄A 微波消化方法與步驟………………………………… 167 附錄B XRD標準圖譜……………………………………… 168 附錄C 表面複合理論………………………………………… 169 附錄D 182 | |
| dc.language.iso | zh-TW | |
| dc.subject | 硫酸根 | zh_TW |
| dc.subject | 氟化物 | zh_TW |
| dc.subject | 氯化物 | zh_TW |
| dc.subject | 溴化物 | zh_TW |
| dc.subject | 硝酸根 | zh_TW |
| dc.subject | 吸附 | zh_TW |
| dc.subject | 活性氧化鋁 | zh_TW |
| dc.subject | 磁性氧化鋁 | zh_TW |
| dc.subject | 半導體LSR | zh_TW |
| dc.subject | adsorption isotherm | en |
| dc.subject | defluoridation | en |
| dc.subject | pseudo-first-order equation | en |
| dc.subject | sol-gel method | en |
| dc.subject | precipitation method | en |
| dc.subject | Elovich rate equation | en |
| dc.subject | pseudo-second-order equation | en |
| dc.subject | Activated alumina | en |
| dc.subject | magnetic alumina | en |
| dc.subject | adsorption | en |
| dc.title | 以商業用及超順磁活性氧化鋁吸附處理陰離子溶液以商業用及超順磁活性氧化鋁吸附處理陰離子溶液 | zh_TW |
| dc.title | Adsorption of Fluoride, Chloride, Bromide, Sulfate and Nitrate onto Commercial and Superparamagnetic Activated Alumina from Aqueous Solutions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張瓊芬,馬鴻文 | |
| dc.subject.keyword | 氟化物,氯化物,溴化物,硫酸根,硝酸根,吸附,活性氧化鋁,磁性氧化鋁,半導體LSR, | zh_TW |
| dc.subject.keyword | Activated alumina,magnetic alumina,adsorption,defluoridation,adsorption isotherm,pseudo-first-order equation,pseudo-second-order equation,Elovich rate equation,precipitation method,sol-gel method, | en |
| dc.relation.page | 181 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
