Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36484
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳進庭(Chin-Tin Chen)
dc.contributor.authorMing-Hsuan Linen
dc.contributor.author林明璇zh_TW
dc.date.accessioned2021-06-13T08:02:34Z-
dc.date.available2016-07-26
dc.date.copyright2011-07-26
dc.date.issued2011
dc.date.submitted2011-07-20
dc.identifier.citation1. Bornside, G. and I. Cohn, The normal microbial flora. Digestive Diseases and Sciences, 1965. 10(10): p. 844-852.
2. Weinstein, R.A., et al., Overview of Nosocomial Infections Caused by Gram-Negative Bacilli. Clinical Infectious Diseases, 2005. 41(6): p. 848-854.
3. Safdar, N. and D.G. Maki, The Commonality of Risk Factors for Nosocomial Colonization and Infection with Antimicrobial-Resistant Staphylococcus aureus, Enterococcus, Gram-Negative Bacilli, Clostridium difficile, and Candida. Annals of Internal Medicine, 2002. 136(11): p. 834-844.
4. Bouza, E. and P. Munoz, Monotherapy versus combination therapy for bacterial infections. Medical Clinics of North America, 2000. 84(6): p. 1357-1389.
5. Epstein, J.H., Phototherapy and Photochemotherapy. New England Journal of Medicine, 1990. 322(16): p. 1149-1151.
6. Roelandts, R., A new light on Niels Finsen, a century after his nobel prize. Photodermatology, Photoimmunology & Photomedicine, 2005. 21(3): p. 115-117.
7. Dolmans, D.E.J.G.J., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-387.
8. Diamond, I., et al., Photodynamic therapy of malignant tumors. The Lancet, 1972. 300(7788): p. 1175-1177.
9. JF, K. and S. ME, Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder. J Urol., 1976. 115(2): p. 150-1.
10. McCaughan, J.S., et al., Palliation of esophageal malignancy with photoradiation therapy. Cancer, 1984. 54(12): p. 2905-2910.
11. Balchum, O.J., D.R. Doiron, and G.C. Huth, Photoradiation therapy of endobronchial lung cancers employing the photodynamic action of hematoporphvrin derivative. Lasers in Surgery and Medicine, 1984. 4(1): p. 13-30.
12. Hayata, Y., et al., Photodynamic therapy with hematoporphyrin derivative in cancer of the upper gastrointestinal tract. Seminars in Surgical Oncology, 1985. 1(1): p. 1-11.
13. Hamblin, M.R. and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochemical & Photobiological Sciences, 2004. 3(5): p. 436-450.
14. Ochsner, M., Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology B: Biology, 1997. 39(1): p. 1-18.
15. Schultz EM, K.A., Inactivation of Staphylococcus bacteriophage by methylene blue. Proceedings of the Society of Experimental Biology and Medicine, 1928. 26: p. 100-101.
16. Soukos, N.S., et al., Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro. Lasers in Surgery and Medicine, 1996. 18(3): p. 253-259.
17. Ackroyd, R., et al., The History of Photodetection and Photodynamic Therapy. Photochemistry and Photobiology, 2001. 74(5): p. 656-669.
18. Chen, Q., et al., Improvement of Tumor Response by Manipulation of Tumor Oxygenation During Photodynamic Therapy. Photochemistry and Photobiology, 2002. 76(2): p. 197-203.
19. Fuchs, J.g. and J. Thiele, The Role of Oxygen in Cutaneous Photodynamic Therapy. Free Radical Biology and Medicine, 1998. 24(5): p. 835-847.
20. Maisch, T., et al., Antibacterial photodynamic therapy in dermatology. Photochemical & Photobiological Sciences, 2004. 3(10): p. 907-917.
21. Donnelly, R.F., P.A. McCarron, and M.M. Tunney, Antifungal photodynamic therapy. Microbiological Research, 2008. 163(1): p. 1-12.
22. Malik, Z., H. Ladan, and Y. Nitzan, Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J. Photochem. Photobiol., B, 1992. 14: p. 262-266.
23. Bertolini, G., et al., Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli. FEMS Microbiology Letters, 1990. 71(1-2): p. 149-156.
24. Gross, S., et al., Protein-A-mediated Targeting of Bacteriochlorophyll-IgG to Staphylococcus aureus: A Model for Enhanced Site-Specific Photocytotoxicity. Photochemistry and Photobiology, 1997. 66(6): p. 872-878.
25. Hamblin, M.R., et al., Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria. Journal of Antimicrobial Chemotherapy, 2002. 49(6): p. 941-951.
26. K. Konig, M.T., B. Sigusch, E. Glockmann, S. Eick and W. Pfister, Red light kills bacteria via photodynamic action. Cell. Mol. Biol. (Paris), 2000. 46: p. 1297-303.
27. Ashkenazi, H., et al., Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunology & Medical Microbiology, 2003. 35(1): p. 17-24.
28. Rabea, E.I., et al., Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 2003. 4(6): p. 1457-65.
29. Shahidi, F., J.K.V. Arachchi, and Y.-J. Jeon, Food applications of chitin and chitosans. Trends in Food Science & Technology, 1999. 10(2): p. 37-51.
30. Bough, W.A., Reduction of suspended solids in vegetable canning waste effluents by coagulation with chitosan. Journal of Food Science, 1975. 40(2): p. 297-301.
31. Hirano, S., et al., Wet spun chitosan-collagen fibers, their chemical N-modifications, and blood compatibility. Biomaterials, 2000. 21(10): p. 997-1003.
32. Xin-Yuan, S. and T. Tian-Wei, New Contact Lens Based on Chitosan/Gelatin Composites. Journal of Bioactive and Compatible Polymers, 2004. 19(6): p. 467-479.
33. Amiji, M.M., Surface modification of chitosan membranes by complexation-interpenetration of anionic polysaccharides for improved blood compatibility in hemodialysis. Journal of Biomaterials Science, Polymer Edition, 1997. 8: p. 281-298.
34. Howling, G.I., et al., The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials, 2001. 22(22): p. 2959-2966.
35. Tsai, G.J.a.W.H.S., Antibacterial Activity of Shrimp Chitosan against Escherichia coli. Journal of Food Protection, 1999. 62: p. 239-243.
36. Helander, I.M., et al., Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International Journal of Food Microbiology, 2001. 71(2-3): p. 235-244.
37. Je, J.-Y. and S.-K. Kim, Chitosan Derivatives Killed Bacteria by Disrupting the Outer and Inner Membrane. Journal of Agricultural and Food Chemistry, 2006. 54(18): p. 6629-6633.
38. Raafat, D., et al., Insights into the Mode of Action of Chitosan as an Antibacterial Compound. Appl. Environ. Microbiol., 2008. 74(12): p. 3764-3773.
39. Sudarshan, N., DG Hoover, and D. Knorr. , Antibacterial action of chitosan. Food Biotechol, 1992. 6(3): p. 257-272.
40. Cuero, R.G., G. Osuji, and A. Washington, N-carboxymethylchitosan inhibition of aflatoxin production: Role of zinc. Biotechnology Letters, 1991. 13(6): p. 441-444.
41. Kumar, A.B.V., M. C. Varadaraj, L. R. Gowda, and R. N. Tharanathan, Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochem. J., 2005(391): p. 167-175.
42. Chung YC, S.Y., Chen CC, Jia G, Wang HL, Wu JC, Lin JG., Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin., 2004. 25(7): p. 932-6.
43. Liu, H., et al., Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 2004. 95(2): p. 147-155.
44. Muzzarelli, R., et al., Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob. Agents Chemother., 1990. 34(10): p. 2019-2023.
45. Kluytmans, J., A. van Belkum, and H. Verbrugh, Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev., 1997. 10(3): p. 505-520.
46. Jarraud, S., et al., Relationships between Staphylococcus aureus Genetic Background, Virulence Factors, agr Groups (Alleles), and Human Disease. Infect. Immun., 2002. 70(2): p. 631-641.
47. Boyce, J.M., Methicillin-Resistant Staphylococcus aureus in Hospitals and Long-Term Care Facilities: Microbiology, Epidemiology, and Preventive Measures. Infection Control and Hospital Epidemiology, 1992. 13(12): p. 725-737.
48. Hiramatsu, K., Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. The Lancet Infectious Diseases, 2001. 1(3): p. 147-155.
49. Corona-Nakamura, A.L., et al., Epidemiologic Study of Pseudomonas aeruginosa in Critical Patients and Reservoirs. Archives of Medical Research. 32(3): p. 238-242.
50. Vaara, M., Agents that increase the permeability of the outer membrane. Microbiol. Mol. Biol. Rev., 1992. 56(3): p. 395-411.
51. Livermore, D.M., Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa: Our Worst Nightmare? Clinical Infectious Diseases, 2002. 34(5): p. 634-640.
52. Celis, R., et al., Nosocomial pneumonia. A multivariate analysis of risk and prognosis. Chest, 1988. 93(2): p. 318-324.
53. Yang, S.-J., et al., Cell Wall Thickening Is Not a Universal Accompaniment of the Daptomycin Nonsusceptibility Phenotype in Staphylococcus aureus: Evidence for Multiple Resistance Mechanisms. Antimicrob. Agents Chemother., 2010. 54(8): p. 3079-3085.
54. Grinholc, M., et al., Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent. Journal of Photochemistry and Photobiology B: Biology, 2008. 90(1): p. 57-63.
55. 楊雅怡, CX加強抗生素對革蘭氏陰性菌的殺菌效果之機制探討. 2009, 國立臺灣大學.
56. 劉育妏, 增強光動力殺菌物質CX的角色探討. 2009, 國立臺灣大學.
57. 張博涵, 以白色念珠菌為模式探討甲殼素增強光動力殺菌的效果. 2010, 國立臺灣大學.
58. Tokura, S., et al., Molecular weight dependent antimicrobial activity by Chitosan. Macromolecular Symposia, 1997. 120(1): p. 1-9.
59. Xia, W.S. and Y.N. Wu., Functional properties of chitoolgosaccharide. J. Wuxi Univ. Light Ind, 1996(15): p. 297-302.
60. Y.Omura, et al., Reexamination of antimicrobial activity of chitosan having different degrees of acetylation and molecular weights. Advances in Chitin Sci., 2002. 6: p. 273-274.
61. Zheng, L.-Y. and J.-F. Zhu, Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate Polymers, 2003. 54(4): p. 527-530.
62. YC, C., et al., Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin, 2004. Jul;25(7): p. 932-6.
63. Tsai, T., et al., Chitosan Augments Photodynamic Inactivation of Gram-Positive and Gram-Negative Bacteria. Antimicrob. Agents Chemother., 2011. 55(5): p. 1883-1890.
64. Gemmell, C.G. and V. Lorian, Effects of Low Concentrationsof Antibiotics on Bacterial Ultrastructure, Virulence and Susceptibility to Immunodefenses: Clinical Significance, in Antibiotics in Laboratory Medicine. 1996. p. 397-452.
65. Cui, L., et al., Cell Wall Thickening Is a Common Feature of Vancomycin Resistance in Staphylococcus aureus. J. Clin. Microbiol., 2003. 41(1): p. 5-14.
66. Peschel, A., et al., Inactivation of the dlt Operon in Staphylococcus aureus Confers Sensitivity to Defensins, Protegrins, and Other Antimicrobial Peptides. Journal of Biological Chemistry, 1999. 274(13): p. 8405-8410.
67. S, H., et al., Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog, 2007. Jul 27;3(7): p. e102.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36484-
dc.description.abstract由於抗生素的廣泛使用,再加上使用方式的不當,使得一些抗藥性病原菌的出現有越來越多的趨勢。這些抗藥性菌株的出現,讓許多研究學者開始關注,並尋求其他的治療方式,如利用噬菌體、抗菌胜肽以及光動力治療。而將光動力作用在微生物上,以達到抑制或殺菌之效果即稱之為PDI (photodynamic inactivation)。光動力殺菌有別於傳統抗菌藥物治療微生物感染的方式,在光動力殺菌過程中,光感物質可迅速地聚集在菌體表面或裡面,而後在經由特定波長的光激發後,產生單態氧及自由基而對微生物細胞形成不可逆的傷害。本實驗室在先前研究發現,甲殼素應用在光動力作用上,能提升光動力作用抑制細菌生長的效果。
在本研究中,首先針對革蘭氏陽性菌之金黃色葡萄球菌和革蘭氏陰性菌之綠膿桿菌菌株,以及其臨床抗藥性菌株進行光動力作用,發現都具有殺菌效果。其次,在探討甲殼素增強光動力殺菌之作用機制,發現增加甲殼素濃度及培養時間,對S. aureus有增強光動力殺菌之效果。另外,本研究進一步發現菌體在進行光動力殺菌後,如果不於適當時間內加入甲殼素作用,菌體會有重新生長且甲殼素將無法發揮協同殺菌的效果。以穿透式電子顯微鏡觀察S. aureus菌體在經過光動力作用後加入甲殼素的型態變化,發現菌體表面都有受到明顯的破壞且呈現不平整的現象,顯示光動力作用會對菌體表面造成破壞,使甲殼素能進一步達到協同殺菌的效果。最後,在光動力作用與細胞壁相關性的研究上,發現光動力殺菌效果與細胞壁厚度沒有明顯的關係,而是和光感物質與菌體的結合量多寡有相關。
zh_TW
dc.description.abstractDrug-resistant bacteria have become an important issue in health. Antimicrobial photodynamic inactivation (PDI) has emerged as a promising treatment modality for microbial infections. Previously, we have found that chitosan can augment Toluidine blue O (TBO) mediated PDI against Staphylococcus aureus and Pseudomonas aeruginosa within 30-min incubation after PDI.
In this study, we further investigated the augmented antimicrobial effect of chitosan after PDI by changing the concentration, incubation time, and its molecular weight against Gram positive S. aureus and Gram negative P. aeruginosa. We found that the increase of concentration or incubation time could enhance the antimicrobial activity of chitosan in both bacteria strains.
Furthermore, we examined the growth curve of PDI-treated S. aureus. The growth rate of PDI-treated bacteria was lower than untreated ones. However, when bacteria grew back to the log-phase after PDI treatment, the augmented antimicrobial activity of chitosan would decrease. These results indicate that surviving bacteria could recover or repaired from the PDI-induced damages when additional incubation proceeded. According to transmission electron microscopy (TEM), bacterial cell wall was further disrupted after PDI in the presence of chitosan and finally caused bacteria death. Beside, we also found that the more TBO binding to bacteria, the better PDI effect could be found. These results indicate that the combination of PDI and chitosan is quite promising for eradicating microbial infections.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:02:34Z (GMT). No. of bitstreams: 1
ntu-100-R98b47409-1.pdf: 2533551 bytes, checksum: 767453075a7c9e9f78be5a0ab91dd96b (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要……………………………………………………………………………….Ⅰ
英文摘要……………………………………………………………………………….Ⅱ
第一章 緒論…………………………………………………………………………….1
1. 微生物與人類……………………………………………………………………….1
1.1 人體之正常菌叢……………………………………………………………….1
1.2 微生物感染與抗生素之治療………………………………………………….2
1.2.1內源性感染……………………………………………………………….2
1.2.2伺機性感染……………………………………………………………….2
1.2.3院內感染………………………………………………………………….2
1.2.4抗生素之治療與瓶頸…………………………………………………….3
2. 光動力治療………………………………………………………………………….4
2.1 光動力治療之起源…………………………………………………………….4
2.2 光動力治療之作用機制……………………………………………………….5
2.3 光動力治療之基本要素……………………………………………………….6
2.4 光動力殺菌…………………………………………………………………….7
3. 甲殼素……………………………………………………………..……………….10
3.1 甲殼素之簡介………………………………………………..……………….10
3.2 甲殼素之應用………………………………………………..……………….10
3.3 甲殼素之抑菌模式………………………………………………..…………11
4. 本研究菌種介紹…………………………………………………..……………….13
4.1 金黃色葡萄球菌 (Staphylococcus aureus) …………………………………13
4.2 抗藥性金黃色葡萄球菌 (Methicillin-resistant S. aureus) …………………13
4.3 綠膿桿菌 (Pseudomonas aeruginosa) ………………………………………14
5. 研究動機與目的…………………………………………...………………………15
第二章 材料與方法………………………………………………...…………………17
1. 藥品與儀器……………………………………………………………...…………17
1.1 藥品…………………………………………………...………………………17
1.2 儀器…………………………………………………...………………………17
2. 菌種來源與保存方法…………………………………………………...…………18
2.1 菌種來源…………………………………………………...…………………18
2.2 菌種保存與活化…………………………………………………...…………18
3. 實驗方法………………………………………………………………...…………19
3.1 光感物質配製……………………………………………………...…………19
3.2 甲殼素配製………………………………………………………...…………19
3.3 懸浮菌體培養……………………………………………………...…………19
3.4 光動力殺菌…………………………………………………...………………19
3.5 菌體與光感物質之結合量分析………………………………………...……20
3.6 光動力殺菌後之生長曲線…………………………………………………...20
3.7 單獨甲殼素殺菌……………………………………………………………...20
3.8 甲殼素結合光動力殺菌……………………………………………………...20
3.9 光動力殺菌後,不同時間點加入甲殼素培養……………………………...21
3.10 穿透式電子顯微鏡之觀察…………………………………………………...21
3.11 細菌細胞壁與直徑之計數…………………………………………………...22
3.12 統計分析……………………………………………………………………...22
第三章 結果…………………………………………………………………………...23
【第一部分:甲殼素加強光動力殺菌效果之研究】
1. 光感物質TBO對懸浮細胞之光動力殺菌效果……………………………….…..23
1.1金黃色葡萄球菌及其臨床抗藥性菌株之光動力殺菌效果………………....23
1.2綠膿桿菌及其臨床抗藥性菌株之光動力殺菌效果………………….……...23
2. 光動力殺菌後培養甲殼素之關聯性探討……………….………………..…..…...24
2.1 甲殼素增強光動力殺菌探討……………….…………………………..…...24
2.2 增加甲殼素的濃度…………………………….………………..…………...25
2.3 增加甲殼素的培養時間……………….…………………………..…...........25
2.4 不同分子量的甲殼素…………………………….………………..………...26
【第二部分:光動力殺菌與甲殼素作用機制之研究】
1. 光動力作用後,存活細菌在生長曲線之探討……………….…………………...27
2. 光動力作用後,甲殼素加入培養之時間點探討……………….………………...27
3. 以穿透式電子顯微鏡觀察菌體經過光動力作用後培養甲殼素之型態變化…....28
【第三部分:探討細菌細胞壁與光動力殺菌之關係】
1. 以穿透式電子顯微鏡觀察菌體細胞壁之厚度…………….……………………...28
2. 光感物質與菌體之結合量分析…………….………………...................................29
2.1金黃色葡萄球菌及其臨床抗藥性菌株…………….………………............29
2.2綠膿桿菌及其臨床抗藥性菌株…………….………………........................29
第四章 討論…………….………………......................................................................30
1. 不同菌種之光動力殺菌效果…………….……………….......................................30
2. 甲殼素增強光動力殺菌之探討………….……………….......................................30
3. 光動力殺菌與細胞壁之關聯性………….……………….......................................32
第五章 結論…………….………………......................................................................34
第六章 未來研究方向….………………......................................................................35
圖表…………….………………....................................................................................37
附錄……….……………………....................................................................................57
參考文獻……….………………....................................................................................59
dc.language.isozh-TW
dc.subject光動力殺菌zh_TW
dc.subject微生物細胞壁zh_TW
dc.subject抗藥性菌株zh_TW
dc.subject甲殼素zh_TW
dc.subjectAntibiotics resistant bacteriaen
dc.subjectPhotodynamic inactivationen
dc.subjectMicrobial cell wallen
dc.subjectChitosanen
dc.title甲殼素輔助光動力抑菌與細菌細胞壁之關聯性探討zh_TW
dc.titleThe effect of combining chitosan with photodynamic inactivation on bacterial cell wallen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡翠敏(Tsui-min Tsai),黃慶璨(Ching-Tsan Huang),許瑞祥(Ruey-Shyang Hseu),簡雄飛(Hsiung-Fei Chien)
dc.subject.keyword光動力殺菌,甲殼素,抗藥性菌株,微生物細胞壁,zh_TW
dc.subject.keywordPhotodynamic inactivation,Chitosan,Antibiotics resistant bacteria,Microbial cell wall,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2011-07-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved