Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36453
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正剛
dc.contributor.authorPo-Wei Hsuen
dc.contributor.author許博為zh_TW
dc.date.accessioned2021-06-13T08:01:24Z-
dc.date.available2008-07-26
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-07-22
dc.identifier.citation[1.] Box, G. E. P., and Draper, N. R. (1987). Empirical model-building and response surfaces. New York: John Wiley & Sons.
[2.] Khuri, A. I., and Cornell, J. A. (1996). Response surfaces: Designs and Analyses (2nd ed.). New York: Marcel Dekker.
[3.] Myers, R. H., and Montgomery, D. C. (2002). Response surface methodology: Process and Product Optimization Using Designed Experiments (2nd ed.). New York: John Wiley & Sons.
[4.] Atkinson, A. C. and Donev, A. N. (1992). Optimum experimental designs. Oxford: Clarendon Press.
[5.] Derringer, G.., & Suich, R., (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, Vol. 12, No. 4, pp.214-219
[6.] Del Castillo, E., Montgomery, D.C. and McCarville, D. R. (1996). Modified desirability functions for multiple responses optimization. Journal of Quality Technology, Vol. 28, No. 3, pp. 331-345.
[7.] Deborah M. Osborne and Robert L.Armacost (1997). State of the art in multiple response surface methodology. In International Conference on Computational Cybernetics and Simulation, (Vol. 12, No. 4, pp.214-219). Orlando: IEEE.
[8.] Wang, T. (2000). Global optimization of constrained nonlinear programming. Dept. of Computer Science, Univ. of Illinois, Illinois.
[9.] Mokhtar S.Bszarra , Hanif D. Sherali ,and C.M. Shetty (1993) . Nonlinear programming: theory, algorithms, and applications(2nd ed.). New York: John Wiley & Sons.
[10.] Draper, N. R. (1963). “Ridge Analysis of Response Surfaces”. Technometrics, Vol. 5, pp. 469-479.
[11.] Ross Bannister (2002). Some vector algebra and the generalized chain rule: Data Assimilation Research Centre, University of Reading, UK. Retrieved July 4, 2005, from the World Wide Web: http://www.met.rdg.ac.uk/~ross/Documents/Chain.html
[12.] Zbigniew Michalewicz (1995). Genetic Algorithms, Numerical Optimization, and Constraints. In International Conference on Genetic Algorithms (pp. 151-158). Pittsburgh.
[13.] NIST/SEMATECH e-Handbook of Statistical Method. Retrieved July 4, 2005, from the World Wide Web: http://www.itl.nist.gov/div898/handbook/
[14.] R. W. D. Nickalls (1993). A new approach to solving the cubic: Cardan's Solution Revealed. The Mathematical Gazette, Vol. 77, pp. 354--359.
[15.] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic (1996). Digital Integrated Circuits. Prentice Hall.
[16.] Wayne Wolf (1998). Modern VLSI design: Systems on Silicon(2nd ed.). Pearson Education
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36453-
dc.description.abstract在本篇研究當中,我們針對多反應曲面(Multiple response surfaces)的最佳化問題提供了一個較為直接的數學建構的方式,將此多目標的最佳化問題轉化成一個四次的非線性規劃問題。大部份的非線性規劃方法在使用上常需具備兩個前提:首先,假設起始解為已知或起始解已在可行解區域內,另一個假設是可行解區域或最佳化目標式為凸性(convex)。因此我們根據脊線分析(Ridge Analysis) 以及中心混成設計(Central Composite Design)的概念,發展了一個找到初始解的方法。此外,透過我們所發展的脊線搜尋法(Ridge Search Algorithm)改善了在大多數搜尋法中搜索路徑曲折(zigzagging)的現象。雖然我們無法去說明脊線搜尋法在所有的非線性規劃問題上都是非常有效率的,但在我們遇到的問題中,它表現的非常好。而與最陡坡度法(Steepest Descent Method)的比較中證實,脊線搜尋法的確能更有效率的收斂,並得到更好的解。將脊線搜尋法推展到非線性規劃的問題上時,我們利用投影或微調的方式對脊線搜尋法的改善路徑加以修正,並且配合上Zoutendijk搜尋法,讓問題能夠有效率的解決。為了驗證我們的方法,我們提供了一個半導體可製造性設計(Design for Manufacturability)的研究實例,在此實例中包括了三個積體電路的設計參數,以及十個各自擁有目標值及規格區間的電性測試項目。經由我們所建置的獨立系統可以對此一多反應曲面最佳化問題提供解決方案,並且能將整個方法應用到其他的領域。zh_TW
dc.description.abstractIn this research, we propose a more straightforward formulation for multiple responses optimization. The formulation turns the multiple responses optimization problem into a quartic nonlinear programming (NLP) problem. Most of NLP methods have two hypotheses: First, the initial set of the search is known and is in the feasible region; and the second, the feasible region or the objective function is convex. We develop a method to search for feasible initial solution based on the idea of ridge analysis and central composite designs (CCD). Furthermore, we develop a Ridge Search Algorithm (RSA) to avoid the zigzagging behavior, which exists in most search methods. Though we are not able to show the RSA is effective for all nonlinear optimization problems, it has been shown quite effective in our problem. Compared with Steepest Descent Method (SDM), the RSA converges effectively and gets better result. We extend the RSA to solve the nonlinear constrained problem by projecting and/or tuning the improvement path found by RSA. Through combination of Ridge projection and Zoutendijk methods, we successfully solve the NLP problem effectively. A real semiconductor DFM problem is also provided to verify our methods. The case has 3 IC layout design factors and 10 ET items with desired targets and specification windows. With our stand-alone software system, we can successfully provide solutions to this problem and apply the proposed methods in different types of applications.en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:01:24Z (GMT). No. of bitstreams: 1
ntu-94-R92546008-1.pdf: 2117130 bytes, checksum: 02508a6d8d8333d9704923d31f2f23e7 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAbstract i
論文摘要 iii
Tables of Contents iv
List of Figures v
List of Tables vii
1 Introduction 1
1.1 Background 1
1.2 Problem Description and Formulation 3
1.3 Current NLP Methods 5
1.3.1. Methods of Line Search 5
1.3.2. Methods of Feasible Direction 7
1.4 Research Objectives 9
1.5 Thesis Organization 9
2 Ridge Projection Method 10
2.1 Ridge Search Method 10
2.2 Search of Initial Feasible Solutions 19
2.3 Ridge Projection 22
2.4 Combination of the Ridge Projection and the Zoutendijk Method 29
3 Case Study of Semiconductor DFM Problem 34
3.1 Geometric Layout Design Problem 34
3.2 Solutions of DFM Problem 36
4 Conclusion 46
Reference 47
Appendix A. Ridge Analysis 49
Appendix B. Problem Formulations of DFM Cases 52
Appendix C. Class Diagram 56
dc.language.isoen
dc.subject可製造性設計zh_TW
dc.subject脊線分析zh_TW
dc.subject脊線搜尋法zh_TW
dc.subjectRidge Analysisen
dc.subjectNLPen
dc.subjectDFMen
dc.subjectRidge Search Algorithmen
dc.title使用脊線投影法之多反應曲面最佳化
及其在半導體可製造設計之應用
zh_TW
dc.titleRidge Projection Method for MRSM Optimization and Its Application to Semiconductor Design for Manufacturability Problemsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee范治民,范書愷,楊烽正,羅增錦
dc.subject.keyword脊線分析,脊線搜尋法,可製造性設計,zh_TW
dc.subject.keywordRidge Search Algorithm,Ridge Analysis,DFM,NLP,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2005-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved