請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36440完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧麗珍 | |
| dc.contributor.author | Hsiao-Jan Chen | en |
| dc.contributor.author | 陳小然 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:00:56Z | - |
| dc.date.available | 2016-10-07 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-20 | |
| dc.identifier.citation | 1. Agirrezabala, X., and J. Frank. 2009. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Q Rev Biophys 42:159-200.
2. Aires de Sousa, M., M. I. Crisostomo, I. S. Sanches, J. S. Wu, J. Fuzhong, A. Tomasz, and H. de Lencastre. 2003. Frequent recovery of a single clonal type of multidrug-resistant Staphylococcus aureus from patients in two hospitals in Taiwan and China. J Clin Microbiol 41:159-163. 3. Arakere, G., S. Nadig, T. Ito, X. X. Ma, and K. Hiramatsu. 2009. A novel type-III staphylococcal cassette chromosome mec (SCCmec) variant among Indian isolates of methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 292:141-148. 4. Archer, G. L., and J. L. Johnston. 1983. Self-transmissible plasmids in staphylococci that encode resistance to aminoglycosides. Antimicrob Agents Chemother 24:70-77. 5. Besier, S., A. Ludwig, V. Brade, and T. A. Wichelhaus. 2005. Compensatory adaptation to the loss of biological fitness associated with acquisition of fusidic acid resistance in Staphylococcus aureus. Antimicrob Agents Chemother 49:1426-1431. 6. Besier, S., A. Ludwig, V. Brade, and T. A. Wichelhaus. 2003. Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Mol Microbiol 47:463-469. 7. Biedenbach, D. J., P. R. Rhomberg, R. E. Mendes, and R. N. Jones. 2010. Spectrum of activity, mutation rates, synergistic interactions, and the effects of pH and serum proteins for fusidic acid (CEM-102). Diagn Microbiol Infect Dis 66:301-307. 8. Billington, O. J., T. D. McHugh, and S. H. Gillespie. 1999. Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother 43:1866-1869. 9. Bodley, J. W., F. J. Zieve, L. Lin, and S. T. Zieve. 1969. Formation of the ribosome-G factor-GDP complex in the presence of fusidic acid. Biochem Biophys Res Commun 37:437-443. 10. Castanheira, M., A. A. Watters, J. M. Bell, J. D. Turnidge, and R. N. Jones. 2010. Fusidic acid resistance rates and prevalence of resistance mechanisms among Staphylococcus spp. isolated in North America and Australia, 2007-2008. Antimicrob Agents Chemother 54:3614-3617. 11. Castanheira, M., A. A. Watters, R. E. Mendes, D. J. Farrell, and R. N. Jones. 2010. Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus spp. from European countries (2008). J Antimicrob Chemother 65:1353-1358. 12. Chambers, H. F., and F. R. Deleo. 2009. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629-641. 13. Chen, C. M., M. Huang, H. F. Chen, S. C. Ke, C. R. Li, J. H. Wang, and L. T. Wu. 2011. Fusidic acid resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in a Taiwanese hospital. BMC Microbiol 11:98-105. 14. Chen, H. J., W. C. Hung, S. P. Tseng, J. C. Tsai, P. R. Hsueh, and L. J. Teng. 2010. Fusidic acid resistance determinants in Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother 54:4985-4991. 15. Chen, Y., R. K. Koripella, S. Sanyal, and M. Selmer. 2010. Staphylococcus aureus elongation factor G--structure and analysis of a target for fusidic acid. FEBS J 277:3789-3803. 16. Chongtrakool, P., T. Ito, X. X. Ma, Y. Kondo, S. Trakulsomboon, C. Tiensasitorn, M. Jamklang, T. Chavalit, J. H. Song, and K. Hiramatsu. 2006. Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother 50:1001-1012. 17. Coutant, C., D. Olden, J. Bell, and J. D. Turnidge. 1996. Disk diffusion interpretive criteria for fusidic acid susceptibility testing of staphylococci by the National Committee for Clinical Laboratory Standards method. Diagn Microbiol Infect Dis 25:9-13. 18. de Allori, M. C., M. A. Jure, C. Romero, and M. E. de Castillo. 2006. Antimicrobial resistance and production of biofilms in clinical isolates of coagulase-negative Staphylococcus strains. Biol Pharm Bull 29:1592-1596. 19. Dobie, D., and J. Gray. 2004. Fusidic acid resistance in Staphylococcus aureus. Arch Dis Child 89:74-77. 20. Enright, M. C., N. P. Day, C. E. Davies, S. J. Peacock, and B. G. Spratt. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008-1015. 21. Enright, M. C., D. A. Robinson, G. Randle, E. J. Feil, H. Grundmann, and B. G. Spratt. 2002. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 99:7687-7692. 22. Fantin, B., R. Leclercq, J. Duval, and C. Carbon. 1993. Fusidic acid alone or in combination with vancomycin for therapy of experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 37:2466-2469. 23. Fitzgerald, J. R., S. R. Monday, T. J. Foster, G. A. Bohach, P. J. Hartigan, W. J. Meaney, and C. J. Smyth. 2001. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J Bacteriol 183:63-70. 24. Gao, Y. G., M. Selmer, C. M. Dunham, A. Weixlbaumer, A. C. Kelley, and V. Ramakrishnan. 2009. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326:694-699. 25. Glimaker, M., C. Granert, and A. Krook. 1988. Septicemia caused by Staphylococcus saprophyticus. Scand J Infect Dis 20:347-348. 26. Gould, I. M. 2005. The clinical significance of methicillin-resistant Staphylococcus aureus. J Hosp Infect 61:277-282. 27. Hacker, J., and J. B. Kaper. 2000. Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641-679. 28. Hanssen, A. M., G. Kjeldsen, and J. U. Sollid. 2004. Local variants of staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci: evidence of horizontal gene transfer? Antimicrob Agents Chemother 48:285-296. 29. Harmsen, D., H. Claus, W. Witte, J. Rothganger, D. Turnwald, and U. Vogel. 2003. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41:5442-5448. 30. Howden, B. P., and M. L. Grayson. 2006. Dumb and dumber--the potential waste of a useful antistaphylococcal agent: emerging fusidic acid resistance in Staphylococcus aureus. Clin Infect Dis 42:394-400. 31. Ito, T., Y. Katayama, K. Asada, N. Mori, K. Tsutsumimoto, C. Tiensasitorn, and K. Hiramatsu. 2001. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1323-1336. 32. Ito, T., X. X. Ma, F. Takeuchi, K. Okuma, H. Yuzawa, and K. Hiramatsu. 2004. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother 48:2637-2651. 33. Johanson, U., and D. Hughes. 1994. Fusidic acid-resistant mutants define three regions in elongation factor G of Salmonella typhimurium. Gene 143:55-9. 34. Kloos, W. E., and M. S. Musselwhite. 1975. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol 30:381-385. 35. Ko, K. S., J. Y. Lee, J. Y. Suh, W. S. Oh, K. R. Peck, N. Y. Lee, and J. H. Song. 2005. Distribution of major genotypes among methicillin-resistant Staphylococcus aureus clones in Asian countries. J Clin Microbiol 43:421-426. 36. Kobayashi, N., S. Urasawa, N. Uehara, and N. Watanabe. 1999. Distribution of insertion sequence-like element IS1272 and its position relative to methicillin resistance genes in clinically important staphylococci. Antimicrob Agents Chemother 43:2780-2782. 37. Koreen, L., S. V. Ramaswamy, E. A. Graviss, S. Naidich, J. M. Musser, and B. N. Kreiswirth. 2004. spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 42:792-799. 38. Kuroda, M., T. Ohta, I. Uchiyama, T. Baba, H. Yuzawa, I. Kobayashi, L. Cui, A. Oguchi, K. Aoki, Y. Nagai, J. Lian, T. Ito, M. Kanamori, H. Matsumaru, A. Maruyama, H. Murakami, A. Hosoyama, Y. Mizutani-Ui, N. K. Takahashi, T. Sawano, R. Inoue, C. Kaito, K. Sekimizu, H. Hirakawa, S. Kuhara, S. Goto, J. Yabuzaki, M. Kanehisa, A. Yamashita, K. Oshima, K. Furuya, C. Yoshino, T. Shiba, M. Hattori, N. Ogasawara, H. Hayashi, and K. Hiramatsu. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225-1240. 39. Lannergard, J., T. Norstrom, and D. Hughes. 2009. Genetic determinants of resistance to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus. Antimicrob Agents Chemother 53:2059-2065. 40. Laurberg, M., O. Kristensen, K. Martemyanov, A. T. Gudkov, I. Nagaev, D. Hughes, and A. Liljas. 2000. Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. J Mol Biol 303:593-603. 41. Lindsay, J. A., A. Ruzin, H. F. Ross, N. Kurepina, and R. P. Novick. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29:527-543. 42. Liu, Y., H. Wang, N. Du, E. Shen, H. Chen, J. Niu, H. Ye, and M. Chen. 2009. Molecular evidence for spread of two major methicillin-resistant Staphylococcus aureus clones with a unique geographic distribution in Chinese hospitals. Antimicrob Agents Chemother 53:512-518. 43. Maiques, E., C. Ubeda, M. A. Tormo, M. D. Ferrer, I. Lasa, R. P. Novick, and J. R. Penades. 2007. Role of staphylococcal phage and SaPI integrase in intra- and interspecies SaPI transfer. J Bacteriol 189:5608-5616. 44. Martemyanov, K. A., A. Liljas, A. S. Yarunin, and A. T. Gudkov. 2001. Mutations in the G-domain of elongation factor G from Thermus thermophilus affect both its interaction with GTP and fusidic acid. J Biol Chem 276:28774-28778. 45. McLaws, F., I. Chopra, and A. J. O'Neill. 2008. High prevalence of resistance to fusidic acid in clinical isolates of Staphylococcus epidermidis. J Antimicrob Chemother 61:1040-1043. 46. McLaws, F. B., A. R. Larsen, R. L. Skov, I. Chopra, and A. J. O'Neill. 2011. Distribution of fusidic acid resistance determinants in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:1173-1176. 47. Murray, B. E., K. V. Singh, J. D. Heath, B. R. Sharma, and G. M. Weinstock. 1990. Comparison of genomic DNAs of different enterococcal isolates using restriction endonucleases with infrequent recognition sites. J Clin Microbiol 28:2059-2063. 48. Nagaev, I., J. Bjorkman, D. I. Andersson, and D. Hughes. 2001. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol Microbiol 40:433-439. 49. Norstrom, T., J. Lannergard, and D. Hughes. 2007. Genetic and phenotypic identification of fusidic acid-resistant mutants with the small-colony-variant phenotype in Staphylococcus aureus. Antimicrob Agents Chemother 51:4438-4446. 50. Novick, R. P., G. E. Christie, and J. R. Penades. 2010. The phage-related chromosomal islands of Gram-positive bacteria. Nat Rev Microbiol 8:541-551. 51. Novick, R. P., and A. Subedi. 2007. The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem Immunol Allergy 93:42-57. 52. O'Brien, F. G., C. Price, W. B. Grubb, and J. E. Gustafson. 2002. Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. J Antimicrob Chemother 50:313-321. 53. O'Neill, A. J., and I. Chopra. 2006. Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol Microbiol 59:664-676. 54. O'Neill, A. J., A. R. Larsen, A. S. Henriksen, and I. Chopra. 2004. A fusidic acid-resistant epidemic strain of Staphylococcus aureus carries the fusB determinant, whereas fusA mutations are prevalent in other resistant isolates. Antimicrob Agents Chemother 48:3594-3597. 55. O'Neill, A. J., A. R. Larsen, R. Skov, A. S. Henriksen, and I. Chopra. 2007. Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus. J Clin Microbiol 45:1505-1510. 56. O'Neill, A. J., F. McLaws, G. Kahlmeter, A. S. Henriksen, and I. Chopra. 2007. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob Agents Chemother 51:1737-1740. 57. Raz, R., R. Colodner, and C. M. Kunin. 2005. Who are you--Staphylococcus saprophyticus? Clin Infect Dis 40:896-898. 58. Ruzin, A., J. Lindsay, and R. P. Novick. 2001. Molecular genetics of SaPI1--a mobile pathogenicity island in Staphylococcus aureus. Mol Microbiol 41:365-377. 59. Shopsin, B., M. Gomez, S. O. Montgomery, D. H. Smith, M. Waddington, D. E. Dodge, D. A. Bost, M. Riehman, S. Naidich, and B. N. Kreiswirth. 1999. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 37:3556-3563. 60. Singh, V. R., and I. Raad. 1990. Fatal Staphylococcus saprophyticus native valve endocarditis in an intravenous drug addict. J Infect Dis 162:783-784. 61. Skold, S. E. 1982. Chemical cross-linking of elongation factor G to both subunits of the 70-S ribosomes from Escherichia coli. Eur J Biochem 127:225-229. 62. Subedi, A., C. Ubeda, R. P. Adhikari, J. R. Penades, and R. P. Novick. 2007. Sequence analysis reveals genetic exchanges and intraspecific spread of SaPI2, a pathogenicity island involved in menstrual toxic shock. Microbiology 153:3235-3245. 63. Takano, T., W. Higuchi, T. Otsuka, T. Baranovich, S. Enany, K. Saito, H. Isobe, S. Dohmae, K. Ozaki, M. Takano, Y. Iwao, M. Shibuya, T. Okubo, S. Yabe, D. Shi, I. Reva, L. J. Teng, and T. Yamamoto. 2008. Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob Agents Chemother 52:837-845. 64. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599. 65. Tormo-Mas, M. A., I. Mir, A. Shrestha, S. M. Tallent, S. Campoy, I. Lasa, J. Barbe, R. P. Novick, G. E. Christie, and J. R. Penades. 2010. Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature 465:779-782. 66. Ubeda, C., P. Barry, J. R. Penades, and R. P. Novick. 2007. A pathogenicity island replicon in Staphylococcus aureus replicates as an unstable plasmid. Proc Natl Acad Sci U S A 104:14182-14188. 67. Ubeda, C., E. Maiques, P. Barry, A. Matthews, M. A. Tormo, I. Lasa, R. P. Novick, and J. R. Penades. 2008. SaPI mutations affecting replication and transfer and enabling autonomous replication in the absence of helper phage. Mol Microbiol 67:493-503. 68. Ubeda, C., E. Maiques, E. Knecht, I. Lasa, R. P. Novick, and J. R. Penades. 2005. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol 56:836-844. 69. Ubeda, C., E. Maiques, M. A. Tormo, S. Campoy, I. Lasa, J. Barbe, R. P. Novick, and J. R. Penades. 2007. SaPI operon I is required for SaPI packaging and is controlled by LexA. Mol Microbiol 65:41-50. 70. Ubeda, C., M. A. Tormo, C. Cucarella, P. Trotonda, T. J. Foster, I. Lasa, and J. R. Penades. 2003. Sip, an integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Mol Microbiol 49:193-210. 71. Worthington, T., P. A. Lambert, and T. S. Elliott. 2000. Is hospital-acquired intravascular catheter-related sepsis associated with outbreak strains of coagulase-negative staphylococci? J Hosp Infect 46:130-134. 72. Yazdankhah, S. P., A. W. Asli, H. Sorum, H. Oppegaard, and M. Sunde. 2006. Fusidic acid resistance, mediated by fusB, in bovine coagulase-negative staphylococci. J Antimicrob Chemother 58:1254-1256. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36440 | - |
| dc.description.abstract | 夫西地酸 (Fusidic acid)為類固醇類的抗生素,臨床上主要用於治療葡萄球菌所引起的皮膚感染或較為嚴重的全身性症狀。夫西地酸藉由與EF-G-GTP/GDP- ribosome結合,使EF-G/GDP無法離開ribosome而抑制細菌蛋白質的合成,達到藥物作用效果。細菌可經由藥物作用標的基因產生突變 (fusA or rplF point mutation)或表現可以保護藥物作用標的之蛋白質 (FusB-protein family)產生抗藥性。抗藥菌株的發生會限制夫西地酸在臨床上的使用,為了維持夫西地酸能在臨床上有效的應用,進一步了解其抗藥基因的盛行率,抗藥菌株間菌種關係,及分析抗藥基因結構有其不可或缺的重要性。
本研究分析由台大醫院收集的夫西地酸抗藥性葡萄球菌臨床菌株,包含71株金黃葡萄球菌(45株甲氧西林[methicillin]抗藥性金黃葡萄球菌及26株甲氧西林敏感性金黃葡萄球菌),36株表皮葡萄球菌,10株溶血葡萄球菌25株腐生葡萄球菌,其夫西地酸抗藥基因(fusA點突變、fusB、fusC與fusD)的盛行率及抗藥程度的關聯性,發現在菌種間有明顯的差異。在甲氧西林抗藥性金黃葡萄球菌中,主要由於fusA點突變導致對於夫西地酸高程度抗藥性(22/38 with MIC ≥128 μg/ml,58%),而大部分的甲氧西林敏感性金黃葡萄球菌(15/26,58%),表皮葡萄球菌(34/36,94%)及溶血葡萄球菌(8/10,80%)則因帶有fusB抗藥基因引起抗藥(MIC範圍為4 μg/ml至32 μg/ml)。在25株腐生葡萄球菌中,有17株因為帶有fusD的抗藥基因造成夫西地酸抗藥(MIC範圍為2 μg/ml to 16 μg/ml)。fusB、fusC、fusD 抗藥基因導致對於夫西地酸較低程度的抗藥。 於金黃葡萄球菌中,41株具有fusA點突變之金黃葡萄球菌(包含38株甲氧西林抗藥性金黃葡萄球菌及3株甲氧西林敏感性金黃葡萄球菌),共發現22個不同位點的突變造成21個胺基酸改變,其中R76C,E444K,E444V,C473S,P478S,M651I為第一次在夫西地酸抗藥之金黃葡萄球菌中被發現,並進一步利用定點突變(site-directed mutagenesis)探討E444K,C473S,R76C所扮演的角色。分析甲氧西林敏感性金黃葡萄球菌中fusB上下游的基因片段結構,其結構為partial IS257-aj1-LP- fusB-aj2-aj3-IS257-partial blaZ,此結構與pUB101中相關序列相同。進一步研究菌株間的種系關係,發現在甲氧西林抗藥性金黃葡萄球菌中有兩個主要的基因型分佈,spa type t037-SCCmec type III (t037-III,28/45,62%)及t002-II (13/45,29%)。根據PFGE樹狀圖結果,以80%相似度作為依據,45株甲氧西林抗藥性金黃葡萄球菌可以分為12個不同的pulsotypes,而在26株甲氧西林敏感性金黃葡萄球菌中則可分為15個pulsotypes。 此外,為了瞭解夫西地酸抗藥性表皮葡萄球菌其fusB的基因片段結構,分析34株帶有fusB抗藥基因之表皮葡萄球菌。定序分析aj1-LP-fusB片段發現三種不同的aj1-LP-fusB類型,其帶有相同的LP及fusB但不同的aj1基因序列,第一型為完整的aj1基因,第二型為自93至421核苷酸缺失之aj1基因,第三型為僅剩最後37核苷酸aj1基因。相較帶有第三型aj1-LP-fusB片段之菌株 (MICs,4至16 µg/ml),帶有第一型及第二型的aj1-LP-fusB片段之菌株可表現相對上較高程度抗藥 (MICs,8至32 µg/ml)。選擇四株帶有不同型的aj1-LP-fusB片段之菌株進一步完成定序,結果顯示在表皮葡萄球菌中,fusB位於噬菌體相關的致病性島嶼 (pathogenicity island)上,但因此基因片段僅具有抗藥基因而無其他毒力因子,分別將此命名為SeRIfusB-2793,SeRIfusB-704,SeRIfusB-7778,SeRIfusB-5907 (S. epidermidis resistance island)。其中,三個抗藥島嶼 (SeRIfusB-2793, SeRIfusB-704, SeRIfusB-5907)嵌入genomic DNA上groEL下游 (相當於金黃葡萄球菌全基因序列44分鐘之位置),而SeRIfusB-7778則嵌入genomic DNA上rpsR基因下游 (相當於金黃葡萄球菌全基因序列8分鐘之位置),此四個抗藥島嶼皆嵌入integrase所辨識之att位置。在34帶有fusB菌株中,28株(82%)為嵌入groEL基因下游之抗藥島嶼 (resistance islands),兩株為嵌入rpsR基因下游之抗藥島嶼,但仍有四株菌株無法確認其嵌入位置及抗藥片段是否為抗藥島嶼。利用PFGE分型發現帶有fusB基因的表皮葡萄球菌菌株間的異質性,此細菌造成的感染應非單一菌株的傳播。在表皮葡萄球菌中,fusB抗藥基因與噬菌體相關的抗藥島嶼有高度關聯性。 | zh_TW |
| dc.description.abstract | Fusidic acid is a steroid antibiotic used as topical agent for skin infection and systemic treatment against staphylococcal infection. Fusidic acid interacting with the elongation factor G (EF-G) blocks bacterial protein synthesis by preventing the release of EF-G/GDP complex from ribosome. Resistance to fusidic acid results from alternation of drug target site and protection of drug target site by FusB-family protein. The emergence of fusidic acid resistance is a problem that could restrict the clinical usage. To maintain the usefulness of fusidic acid, it is important to clarify the prevalence of the resistance mechanisms, the phylogenetic lineages between the resistant isolates, and genetic organizations of resistance determinants.
A total of 71 fusidic acid-resistant Staphylococcus aureus (45 methicillin-resistant and 26 methicillin-susceptible), 36 fusidic acid-resistant Staphylococcus epidermidis, 10 fusidic acid-resistant Staphylococcus haemolyticus, and 25 fusidic acid-resistant Staphylococcus saprophyticus isolates were examined for the presence of resistance determinants. The distribution of fusA point mutations, fusB, and fusC was significantly different between staphylococci. Among 45 fusidic acid-resistant MRSA, 38 (84%) had fusA mutations conferring high-level resistance to fusidic acid (22/38 with MIC ≥128 μg/ml), none had fusB, and 7 (16%) had fusC. Most methicillin-susceptible S. aureus (MSSA, 15/26, 58%), S. epidermidis (34/36, 94%) and S. haemolyticus (8/10, 80%) carry fusB determinant (MIC ranges from 4μg/ml to 32 μg/ml). Among 25 S. saprophyticus, 17 (68%) isolates carry fusD determinant (MIC ranges from 2 μg/ml to 16 μg/ml). Low-level resistance to fusidic acid (MICs, ≤32 μg/ml) was found in most fusB- or fusC- or fusD- positive isolates. For 41 isolates (38 MRSA and 3 MSSA) with fusA mutations, a total of 21 amino-acid substitutions in EF-G (fusA gene) were detected. Of which, EF-G, R76C, E444K, E444V, C473S, P478S, and M651I, were identified for the first time. Furthermore, we analyzed the importance of E444K, C473S, and R76C by site-directed mutagenesis. Nucleotide sequencing of fusB and flanking regions in a MSSA isolate revealed the structure of partial IS257-aj1-LP-fusB-aj2-aj3-IS257-partial blaZ, which is identical to the corresponding region in pUB101, and the rest of fusB-carrying MSSA isolates also show similar structures. On the basis of spa and SCCmec typing, two major genotypes, spa type t037-SCCmec type III (t037-III, 28/45, 62%) and t002-II (13/45, 29%), were predominant among 45 MRSA. By pulsed-field gel electrophoresis analysis, 45 MRSA isolates were divided into 12 clusters, while 26 MSSA isolates were divided into 15 clusters. To understand the high prevalence of fusB in fusidic acid-resistant S. epidermidis, analysis of resistance elements in 34 isolates was performed. First, sequence analysis of aj1-LP-fusB region indicated that at least three types were present. Type I contained full-length aj1, type II contained a partial aj1 truncated from 93 to 421 nt, and type III contained a more truncated aj1 that retained only the last 37 nt. Isolates with type I or type II aj1 displayed slightly higher-level of resistance to fusidic acid (MICs, 8 to 32 µg/ml) compared with those with type III aj1 (MICs, 4 to 16 µg/ml). Subsequent sequencing of the flanking regions of fusB from four selected isolates carrying different types of aj1-LP-fusB region revealed that the fusB were all located on phage-related resistance islands (RIs), referred to as SeRIfusB-2793, SeRIfusB-704, SeRIfusB-5907, and SeRIfusB-7778, respectively. Among them, three islands (SeRIfusB-2793, SeRIfusB-704, SeRIfusB-5907) were located downstream of groEL (corresponding to 44’ position based on S. aureus whole genomic sequences), and one (SeRIfusB-7778) was located downstream of the rpsR (corresponding to 8’ position). All of the RIs were inserted into integrase-recognized att sites. Among 34 isolates, the insertion sites of fusB RIs were mostly (28/34, 82%) located downstream of groEL, two were located downstream of rpsR; but four remained unidentified. The pulsotypes distribution indicated that fusB-containing S. epidermidis isolates were heterogeneous. In conclusion, the fusB resistance determinant in S. epidermidis was highly associated with phage-related RIs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:00:56Z (GMT). No. of bitstreams: 1 ntu-100-D95424003-1.pdf: 1018702 bytes, checksum: 708216e3c53e187f561458e3e7364114 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vii LIST OF FIGURES x LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Staphylococci 1 1.1.1 Staphylococcus aureus 1 1.1.1.1 Molecular typing of MRSA 2 1.1.2 Coagulase-negative staphylococci 4 1.2 Action of fusidic acid 5 1.3 Resistance mechanisms to fusidic aicd 6 1.3.1 Alternation of the drug target site 6 1.3.2 Protection of the drug target site 7 1.4 Epidemiology of fusidic acid-resistant staphylococci 7 1.4.1 Prevalence of fusidic acid-resistant staphylococci 8 1.4.2 Prevalence of resistance determinants in S. aureus 8 1.4.3 Prevalence of resistance determinants in CoNS 9 1.5 Pathogenicity islands 10 1.5.1 Genome characterization and conserved gene organization 10 1.5.2 SaPI life cycle 11 1.6 Specific aims 11 Chapter 2 Materials and Methods 13 2.1 Bacterial strains 13 2.2 Antimicrobial susceptibility testing 13 2.3 DNA extraction 14 2.4 Detection of fusidic acid resistance determinants by PCR 15 2.5 Southern blot 17 2.6 Cloning and sequencing of fusB and flanking regions 20 2.7 SCCmec typing 22 2.8 spa typing and multilocus sequence typing 23 2.9 Pulsed-field gel electrophoresis 24 2.10 Construction of plasmid with fusA point mutation 25 2.11 Determination of biological fitness 28 2.12 aj1-LP-fusB detection 29 2.13 Phylogenetic analysis of integrases 30 2.14 Prediction of insertion sites in other S. epidermidis isolates 30 2.15 Nucleotide sequence accession number 31 Chapter 3 Results 32 3.1 Fusidic acid resistance determinants among staphylococci 32 3.1.1 MIC of fusidic acid 32 3.1.2 Prevalence of fusidic acid resistance determinants 32 3.1.3 Relationship of MIC to fusidic acid-resistance determinants 33 3.2 Genetic analysis of MRSA and MSSA with resistance to fusidic acid 33 3.2.1 Mutations in fusA 33 3.2.2 Genetic structure of fusB-containing regions in MSSA 34 3.2.3 Genotyping of MRSA by spa type, SCCmec type, and MLST 34 3.2.4 PFGE analysis in MRSA and MSSA 35 3.2.5 Role of fusA point mutation 36 3.2.5.1 Fusidic acid susceptibilities of recombinant S. aureus strains 36 3.2.5.2 Growth curve of recombinant S. aureus strains 37 3.2.5.3 Competition assays 37 3.3 Genetic basis of fusB-mediated resistance to fusidic acid in S. epidermidis 38 3.3.1 Variation of aj1-LP-fusB fragments 38 3.3.2 Sequence analysis of fusB and flanking regions 39 3.3.3 attc site sequences and locations 40 3.3.4 Phylogenetic relationships among integrases 41 3.3.5 Determination of insertion sites in the remaining S. epidermidis isolates 41 3.3.6 PFGE analysis 42 Chapter 4 Discussion 43 4.1 Fusidic acid resistance determinants among staphylococci 43 4.2 Genetic analysis of MRSA and MSSA with resistance to fusidic acid 44 4.3 Genetic basis of fusB-mediated resistance to fusidic acid in S. epidermidis 48 REFERENCES 79 APPENDIX 90 | |
| dc.language.iso | en | |
| dc.subject | fusB | zh_TW |
| dc.subject | 表皮葡萄球菌 | zh_TW |
| dc.subject | 金黃葡萄球菌 | zh_TW |
| dc.subject | 夫西地酸 | zh_TW |
| dc.subject | fusA點突變 | zh_TW |
| dc.subject | fusA point mutation | en |
| dc.subject | Staphylococcus epidermidis | en |
| dc.subject | Staphylococcus aureus | en |
| dc.subject | fusidic acid | en |
| dc.subject | fusB | en |
| dc.title | 金黃葡萄球菌及表皮葡萄球菌對於夫西地酸抗藥基因分析 | zh_TW |
| dc.title | Fusidic acid resistance elements in Staphylococcus aureus and Staphylococcus epidermidis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳俊忠,賴信志,俞松良,廖淑貞 | |
| dc.subject.keyword | 夫西地酸,fusA點突變,fusB,金黃葡萄球菌,表皮葡萄球菌, | zh_TW |
| dc.subject.keyword | fusidic acid,fusA point mutation,fusB,Staphylococcus aureus,Staphylococcus epidermidis, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-20 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 994.83 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
