Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36418
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫進德(Jin-Der Wen)
dc.contributor.authorYi-Lan Chenen
dc.contributor.author陳臆嵐zh_TW
dc.date.accessioned2021-06-13T08:00:09Z-
dc.date.available2011-07-27
dc.date.copyright2011-07-27
dc.date.issued2011
dc.date.submitted2011-07-20
dc.identifier.citationAitken, C. E., A. Petrov, et al. (2010). 'Single ribosome dynamics and the mechanism of translation.' Annu Rev Biophys 39: 491-513.
Aitken, C. E. and J. D. Puglisi (2010). 'Following the intersubunit conformation of the ribosome during translation in real time.' Nat Struct Mol Biol 17(7): 793-800.
Axelrod, D. (2003). 'Total internal reflection fluorescence microscopy in cell biology.' Methods Enzymol 361: 1-33.
Ban, N., P. Nissen, et al. (2000). 'The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution.' Science 289(5481): 905-920.
Blaha, G., U. Stelzl, et al. (2000). 'Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy.' Methods Enzymol 317: 292-309.
Blanchard, S. C., R. L. Gonzalez, et al. (2004). 'tRNA selection and kinetic proofreading in translation.' Nat Struct Mol Biol 11(10): 1008-1014.
Blanchard, S. C., H. D. Kim, et al. (2004). 'tRNA dynamics on the ribosome during translation.' Proc Natl Acad Sci U S A 101(35): 12893-12898.
Boon, K., E. Vijgenboom, et al. (1992). 'Isolation and functional analysis of histidine-tagged elongation factor Tu.' Eur J Biochem 210(1): 177-183.
Bustamante, C. (2008). 'In singulo biochemistry: when less is more.' Annu Rev Biochem 77: 45-50.
Carter, N. J. and R. A. Cross (2005). 'Mechanics of the kinesin step.' Nature 435(7040): 308-312.
Cate, J. H., M. M. Yusupov, et al. (1999). 'X-ray crystal structures of 70S ribosome functional complexes.' Science 285(5436): 2095-2104.
Chen, G., K. Y. Chang, et al. (2009). 'Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting.' Proc
Natl Acad Sci U S A 106(31): 12706-12711.
Claude, A. (1943). 'The constitution of protoplasm.' Science 97(2525): 451-456.
Cornish, P. V., D. N. Ermolenko, et al. (2008). 'Spontaneous intersubunit rotation in single ribosomes.' Molecular Cell 30(5): 578-588.
Cornish, P. V., D. N. Ermolenko, et al. (2009). 'Following movement of the L1 stalk between three functional states in single ribosomes.' Proc Natl Acad Sci U S A 106(8): 2571-2576.
Cornish, P. V. and T. Ha (2007). 'A survey of single-molecule techniques in chemical biology.' ACS Chem Biol 2(1): 53-61.
Cox, R. A. and U. Z. Littauer (1959). 'Secondary Structure of Ribonucleic Acid in Solution.' Nature 184(4689): 818-819.
Cross, R. A. (1997). 'A protein-making motor protein.' Nature 385(6611): 18-19.
Eid, J., A. Fehr, et al. (2009). 'Real-time DNA sequencing from single polymerase molecules.' Science 323(5910): 133-138.
Ermolenko, D. N. and H. F. Noller (2011). 'mRNA translocation occurs during the second step of ribosomal intersubunit rotation.' Nat Struct Mol Biol 18(4): 457-462.
Fei, J., J. E. Bronson, et al. (2009). 'Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation.' Proc Natl Acad Sci U S A 106(37): 15702-15707.
Fei, J., P. Kosuri, et al. (2008). 'Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation.' Mol Cell 30(3): 348-359.
Fischer, N., A. L. Konevega, et al. (2010). 'Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy.' Nature 466(7304): 329-333.
Frank, J. and R. K. Agrawal (2000). 'A ratchet-like inter-subunit reorganization of the ribosome during translocation.' Nature 406(6793): 318-322.
Fredrick, K. and H. F. Noller (2002). 'Accurate translocation of mRNA by the ribosome requires a peptidyl group or its analog on the tRNA moving into the 30S P site.' Mol Cell 9(5): 1125-1131.
Galburt, E. A., S. W. Grill, et al. (2007). 'Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner.' Nature 446(7137): 820-823.
Gavrilova, L. P., O. E. Kostiashkina, et al. (1976). 'Factor-free ('non-enzymic') and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes.' J Mol Biol 101(4): 537-552.
Guydosh, N. R. and S. M. Block (2009). 'Direct observation of the binding state of the kinesin head to the microtubule.' Nature 461(7260): 125-128.
Heilemann, M., E. Margeat, et al. (2005). 'Carbocyanine dyes as efficient reversible single-molecule optical switch.' J Am Chem Soc 127(11): 3801-3806.
Hess, S. T., T. P. Girirajan, et al. (2006). 'Ultra-high resolution imaging by fluorescence photoactivation localization microscopy.' Biophys J 91(11): 4258-4272.
Hirono-Hara, Y., K. Ishizuka, et al. (2005). 'Activation of pausing F1 motor by external force.' Proc Natl Acad Sci U S A 102(12): 4288-4293.
Hodges, C., L. Bintu, et al. (2009). 'Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II.' Science 325(5940): 626-628.
Hohlbein, J., K. Gryte, et al. (2010). 'Surfing on a new
wave of single-molecule fluorescence methods.' Phys Biol 7(3): 031001.
Ishii, Y., A. Ishijima, et al. (2001). 'Single molecule nanomanipulation of biomolecules.' Trends Biotechnol 19(6): 211-216.
Ishijima, A. and T. Yanagida (2001). 'Single molecule nanobioscience.' Trends Biochem Sci 26(7): 438-444.
Jain, A., R. Liu, et al. (2011). 'Probing cellular protein complexes using single-molecule pull-down.' Nature 473(7348): 484-488.
Jelenc, P. C. and C. G. Kurland (1979). 'Nucleoside triphosphate regeneration decreases the frequency of translation errors.' Proc Natl Acad Sci U S A 76(7): 3174-3178.
Jewett, M. C. and J. R. Swartz (2004). 'Rapid expression and purification of 100 nmol quantities of active protein using cell-free protein synthesis.' Biotechnol Prog 20(1): 102-109.
Joo, C., H. Balci, et al. (2008). 'Advances in single-molecule fluorescence methods for molecular biology.' Annu Rev Biochem 77: 51-76.
Kapanidis, A. N. and T. Strick (2009). 'Biology, one molecule at a time.' Trends Biochem Sci 34(5): 234-243.
Karunatilaka, K. S., A. Solem, et al. (2010). 'Single-molecule analysis of Mss116-mediated group II intron folding.' Nature 467(7318): 935-939.
Keller, E. B., P. C. Zamecnik, et al. (1954). 'The Role of Microsomes in the Incorporation of Amino Acids into Proteins.' Journal of Histochemistry & Cytochemistry 2(5): 378-386.
Kim, D. M., T. Kigawa, et al. (1996). 'A highly efficient cell-free protein synthesis system from Escherichia coli.' Eur J Biochem 239(3): 881-886.
kjeldgaard, N. O. and K. Gaussing (1974). Regulation of biosynthesis of ribosomes., Cold Spring Harbor Laboratory.
Klaholz, B. P. (2010). 'Let's see how tmRNA rescues a stuck ribosome.' EMBO J 29(22): 3747-3749.
Laemmli, U. K. (1970). 'Cleavage of structural proteins during the assembly of the head of bacteriophage T4.' Nature 227(5259): 680-685.
Lancaster, L. and H. F. Noller (2005). 'Involvement of 16S rRNA nucleotides G1338 and A1339 in discrimination of initiator tRNA.' Mol Cell 20(4): 623-632.
Levene, M. J., J. Korlach, et al. (2003). 'Zero-mode waveguides for single-molecule analysis at high concentrations.' Science 299(5607): 682-686.
Levi, A., D. Mercanti, et al. (1974). 'Anomalous behaviour of EDTA during gel filtration. Studies on the possible contamination of the S100 protein.' Anal Biochem 62(1): 301-304.
Liljas, A. (2004). Structural Aspects of Protein Synthesis, World Scientific.
Liu, C. Y., M. T. Qureshi, et al. (2011). 'Interaction strengths between the ribosome and tRNA at various steps of translocation.' Biophys J 100(9): 2201-2208.
Marshall, R. A., C. E. Aitken, et al. (2008). 'Translation at the single-molecule level.' Annu Rev Biochem 77: 177-203.
Moazed, D. and H. F. Noller (1989). 'Interaction of Transfer-Rna with 23s Ribosomal-Rna in the Ribosomal a-Sites, P-Sites, and E-Sites.' Cell 57(4): 585-597.
Moazed, D. and H. F. Noller (1989). 'Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites.' Cell 57(4): 585-597.
Moazed, D. and H. F. Noller (1990). 'Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA.' J Mol Biol 211(1): 135-145.
Moerner, W. E. (2007). 'New directions in single-molecule imaging and analysis.' Proc Natl Acad Sci U S A 104(31): 12596-12602.
Mohr, D., W. Wintermeyer, et al. (2002). 'GTPase activation of elongation factors Tu and G on the ribosome.' Biochemistry 41(41): 12520-12528.
Mori, T., R. D. Vale, et al. (2007). 'How kinesin waits between steps.' Nature 450(7170): 750-754.
Muresan, L., J. Jacak, et al. (2010). 'Microarray analysis at single-molecule resolution.' IEEE Trans Nanobioscience 9(1): 51-58.
Myong, S., I. Rasnik, et al. (2005). 'Repetitive shuttling of a motor protein on DNA.' Nature 437(7063): 1321-1325.
Neuman, K. C. and A. Nagy (2008). 'Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy.' Nat Methods 5(6): 491-505.
Nirenberg, M. W. and J. H. Matthaei (1961). 'The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides.' Proc Natl Acad Sci U S A 47: 1588-1602.
Nissen, P., J. Hansen, et al. (2000). 'The structural basis of ribosome activity in peptide bond synthesis.' Science 289(5481): 920-930.
Noji, H., R. Yasuda, et al. (1997). 'Direct observation of the rotation of F1-ATPase.' Nature 386(6622): 299-302.
Oesterhelt, F., D. Oesterhelt, et al. (2000). 'Unfolding pathways of individual bacteriorhodopsins.' Science 288(5463): 143-146.
Ogata, K. and H. Nohara (1957). 'The Possible Role of the Ribonucleic Acid (Rna) of the Ph 5 Enzyme in Amino Acid Activation.' Biochimica Et Biophysica Acta 25(3): 659-660.
Onoa, B., S. Dumont, et al. (2003). 'Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme.' Science 299(5614): 1892-1895.
Onoa, B. and I. Tinoco, Jr. (2004). 'RNA folding and unfolding.' Curr Opin Struct Biol 14(3): 374-379.
Parot, P., Y. F. Dufrene, et al. (2007). 'Past, present and
future of atomic force microscopy in life sciences and medicine.' J Mol Recognit 20(6): 418-431.
Pavlov, M. Y. and M. Ehrenberg (1996). 'Rate of translation of natural mRNAs in an optimized in vitro system.' Arch Biochem Biophys 328(1): 9-16.
Perrin, D. D. and B. Dempsey (1974). Buffers for pH and Metal Ion Control, Chapman and Hall.
Petrov, A., G. Kornberg, et al. (2011). 'Dynamics of the translational machinery.' Curr Opin Struct Biol 21(1): 137-145.
Rondelez, Y., G. Tresset, et al. (2005). 'Highly coupled ATP synthesis by F1-ATPase single molecules.' Nature 433(7027): 773-777.
Roy, R., S. Hohng, et al. (2008). 'A practical guide to single-molecule FRET.' Nat Methods 5(6): 507-516.
Sambrook, J. and D. W. Russell (2001). Molecular Cloning: a laboratory manual, Cold Spring Harbor.
Shimizu, Y., A. Inoue, et al. (2001). 'Cell-free translation reconstituted with purified components.' Nat Biotechnol 19(8): 751-755.
Shimizu, Y., T. Kanamori, et al. (2005). 'Protein synthesis by pure translation systems.' Methods 36(3): 299-304.
Shine, J. and L. Dalgarno (1974). '3'-Terminal Sequence of Escherichia-Coli 16s Ribosomal-Rna - Possible Role in Initiation and Termination of Protein-Synthesis.' Proceedings of the Australian Biochemical Society 7(May27): 72-72.
Southworth, D. R., J. L. Brunelle, et al. (2002). 'EFG-independent translocation of the mRNA:tRNA complex is promoted by modification of the ribosome with thiol-specific reagents.' J Mol Biol 324(4): 611-623.
Spirin, A. S. (1978). 'Energetics of the ribosome.' Prog Nucleic Acid Res Mol Biol 21: 39-62.
Steitz, T. A. (2008). 'A structural understanding of the dynamic ribosome machine.' Nature Reviews Molecular Cell Biology 9(3): 242-253.
Takyar, S., R. P. Hickerson, et al. (2005). 'mRNA helicase activity of the ribosome.' Cell 120(1): 49-58.
Trabuco, L. G., E. Schreiner, et al. (2010). 'The role of L1 stalk-tRNA interaction in the ribosome elongation cycle.' J Mol Biol 402(4): 741-760.
Uemura, S., C. E. Aitken, et al. (2010). 'Real-time tRNA transit on single translating ribosomes at codon resolution.' Nature 464(7291): 1012-1017.
Uemura, S., M. Dorywalska, et al. (2007). 'Peptide bond formation destabilizes Shine-Dalgarno interaction on the ribosome.' Nature 446(7134): 454-457.
Wagner, E. G., P. C. Jelenc, et al. (1982). 'Rate of elongation of polyphenylalanine in vitro.' Eur J Biochem 122(1): 193-197.
Walter, N. G., C. Y. Huang, et al. (2008). 'Do-it-yourself guide: how to use the modern single-molecule toolkit.' Nat Methods 5(6): 475-489.
Weiss, S. (1999). 'Fluorescence spectroscopy of single biomolecules.' Science 283(5408): 1676-1683.
Wen, J. D., L. Lancaster, et al. (2008). 'Following translation by single ribosomes one codon at a time.' Nature 452(7187): 598-603.
Wimberly, B. T., D. E. Brodersen, et al. (2000). 'Structure of the 30S ribosomal subunit.' Nature 407(6802): 327-339.
Yildiz, A., J. N. Forkey, et al. (2003). 'Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization.' Science 300(5628): 2061-2065.
Yusupov, M. M., G. Z. Yusupova, et al. (2001). 'Crystal structure of the ribosome at 5.5 angstrom resolution.' Science 292(5518): 883-896.
Zamecnik, P. C. and E. B. Keller (1954). 'Relation between Phosphate Energy Donors and Incorporation of Labeled Amino Acids into Proteins.' Journal of Biological Chemistry 209(1): 337-354.
Zamecnik, P. C., E. B. Keller, et al. (1956). 'Mechanism of Incorporation of Labeled Amino Acids into Protein.' Journal of Cellular and Comparative Physiology 47: 81-101.
Zubay, G. (1973). 'In vitro synthesis of protein in microbial systems.' Annu Rev Genet 7: 267-287.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36418-
dc.description.abstract雖然關於轉譯過程的研究已經持續了五十年,但是其中仍有許多未解的部分。舉例來說,像核醣體這樣巨大且精密的聚合物是如何協調內部的構造來達到轉譯的精確性就是人們一直以來想要知道的問題。之前,生化反應的研究以及結構的資訊給了我們許多的訊息,包含轉譯過程中核醣核酸與核醣核酸、核醣核酸與蛋白質之間的交互作用以及不同狀態的核醣體。然而,像是核醣體間的異質性以及其動態的移動卻很難被觀察到。最近,許多的研究顯示我們可以利用單分子的技術來將這些片段的資訊整合成一部連環的故事。在此研究中,我們將焦點放在建立一個可以讓我們在不同條件下操縱並控制的體外轉譯系統並將其應用於單分子實驗中。因此,我們一次可以追蹤一個轉譯的過程甚至是轉譯過程中的一步。在研究的一開始,我們從大腸桿菌 Escherichia coli 上純化出轉譯過程中所需的轉譯因子以及核醣體,並且我們也證實了它們的活性。接下來,我們將這些材料組合在一起並表現冷光蛋白酶。冷光蛋白酶讓我們可以用數值定量來觀察蛋白質的表現。利用這樣的方式我們才得以建立一個最佳化的體外轉譯系統,包括緩衝液的組成、各個因子、以及溫度的調整等幾個部分。 此時,配合單分子的研究我們正在架設一組全反射螢光顯微鏡。而這兩個系統將會先用來觀察核醣體的解旋活性。zh_TW
dc.description.abstractAlthough it has been studied over half a century, the translation mechanism is still far from clear. How a large and sophisticated ribosome complex coordinates to accomplish the high translation fidelity is what people have been curious about. Biochemical studies and structure data give us lots of information including RNA-RNA, RNA-protein interactions inside the ribosome and different ribosomal states during translation. However, the heterogeneity and dynamic movements of ribosomes are hard to be observed by traditional approaches. Recently, it had been shown that single-molecule methods may help to combine these snapshots into a movie. In this study, we focus on setting up an in vitro translation system which can be manipulated and controlled under different conditions, and then applied to single molecule experiments. Therefore, we can follow the translation process one molecule and one step at a time. First, all the translation factors as well as ribosomes required for the system have been purified from Escherichia coli and confirmed to be active. These components are then put together to express luciferase protein, which allows us to quantify the expression yield. With this method, we wish to optimize the in vitro translation system in our laboratory. This system has been tuned by varying the buffer composition, the translation factors, and temperature. Now we are building a TIRF (total internal reflection fluorescence) microscope to study translation at the single-molecule level. The helicase activity of the ribosome will be studied first.en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:00:09Z (GMT). No. of bitstreams: 1
ntu-100-R98b43011-1.pdf: 2543034 bytes, checksum: 5a00fdc5e0c5d8b35abed2670c384272 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書...........................................
誌謝......................................................i
摘要.....................................................ii
ABSTRACT................................................iii
CONTENTS.................................................iv
FIGURE LIST.............................................vii
TABLE LIST.............................................viii
CHAPTER 1 INTRODUCTION
1.1 Translation...........................................1
1.1.1 Ribosomes...........................................1
1.1.2 Structures of the Ribosome..........................1
1.1.3 The Translation Process and Ribosomal States........2
1.1.4 Some Hot Topics on Translation......................3
1.1.5 in vitro Translation Systems........................4
1.2 Single-Molecule Techniques............................5
1.2.1 Overview............................................5
1.2.2 Application of Single-Molecule Techniques...........6
1.2.3 Translation at Single-Molecule Level................6
1.3 Specific Aims.........................................7
CHAPTER 2 MATERIALS AND METHODS
2.1 Materials.............................................8
2.1.1 Bacteria Strains....................................8
2.1.2 Plasmids............................................8
2.1.3 Kits................................................9
2.1.4 Chemicals...........................................9
2.1.5 Enzymes............................................10
2.1.6 Primers............................................11
2.1.7 Buffers............................................12
2.2 Methods..............................................13
2.2.1 Plasmid Construction...............................13
2.2.2 Purification.......................................14
2.2.3 Translation Initiation Complex.....................17
2.2.4 Activity test of EF-Tu and Ribosomes...............18
2.2.5 Setup of an in vitro Translation System............18
2.2.6 Charging of tRNAs..................................19
2.2.7 Western Blot.......................................20
2.2.8 Setup of TIRF Microscope...........................21
CHAPTER 3 RESULTS
3.1 Purification of Translation Factors..................23
3.2 Purification of Ribosomes............................23
3.3 Purification of S100DEAE.............................24
3.4 Formation of Initiation Complexes....................24
3.5 Activity of EF-Tu and Ribosomes......................25
3.6 Assay of the in vitro Translation System.............26
3.7 Confirmation of the Activities of Purified Ribosomes
and Translation Factors..............................27
3.8 Optimization of the Translation System...............28
3.8.1 Buffer Conditions..................................28
3.8.2 Factors............................................30
3.8.3 Temperature........................................32
3.8.4 S100DEAE...........................................33
3.9 Charging of tRNAs....................................35
3.10 Use of Charged tRNA to Our in vitro Translation
System..............................................35
CHAPTER 4 DISCUSSION
4.1 Buffer Systems for Protein Expression................37
4.2 Enzymes Involved in an in vitro Translation System...38
4.3 The Purification of IF-1.............................38
4.4 Some Concerns in our Translation System..............39
4.5 Pre-charging of tRNA.................................40
4.6 Translation of Different mRNA Templates..............41
CHAPTER 5 FUTURE WORKS
5.1 Background...........................................42
5.1.1 Application of TIRF Microscope.....................42
5.1.2 The mRNA Helicase Activity of Ribosome.............42
5.2 The Aim in the Near Future...........................43
5.3 Preliminary Results..................................44
5.3.1 Setup a TIRF Microscope............................44
5.3.2 Adjusting the TIRF Microscope to Observe Single
FluoSphere.........................................45
5.3.3 Experimental Design for mRNA Helicase Activity of
Ribosome...........................................45
5.4 Discussion...........................................46
REFERENCES...............................................47
FIGURE LIST
Figure 3.1 Purification of ribosome and translation
factors.......................................55
Figure 3.2 Test of RNase activities in purified proteins.56
Figure 3.3 Formation of initiation complex...............57
Figure 3.4 Activities of ribosome and EF-Tu..............58
Figure 3.5 Different batches of ribosomes in PURExpress
system........................................59
Figure 3.6 Activities of purified translation factors....60
Figure 3.7 Both protease inhibitor and EDTA increase
luciferase yields.............................61
Figure 3.8 in vitro translations with different EDTA
concentrations................................62
Figure 3.9 Translation activity is determined by Mg2+
concentrations................................63
Figure 3.10 Optimizing the NH4Cl concentration...........64
Figure 3.11 Translation in polymix buffer................65
Figure 3.12 Translation without the supply of IF mix
and EF mix...................................66
Figure 3.13 Elimination of each translation factor one
at a time....................................67
Figure 3.14 Optimizing the Mg2+ concentration after
doubling the factor amounts..................68
Figure 3.15 Optimizing the concentration of initiation
factors......................................69
Figure 3.16 The titration of EF-Tu concentration.........70
Figure 3.17 Translation at different temperatures........71
Figure 3.18 The protein yield at 25 °C was increased.....72
Figure 3.19 Effects of S100DEAE (1)......................73
Figure 3.20 Effects of S100DEAE (2)......................74
Figure 3.21 Western blotting of Renilla Luciferase.......75
Figure 3.22 Charging of tRNAtotal........................76
Figure 3.23 Addition of the charged tRNAs to our system..77
Figure 3.24 Optimizing the condition with pre-charged
tRNA.........................................78
Figure 5.1 TIRF setup....................................79
Figure 5.2 Spectra of filter set inside the microscope...80
Figure 5.3 Single FluoSphere in a TIRF image.............81
Figure 5.4 The dual-view system..........................82
Figure 5.5 mRNA construct for single-molecule study......83
Figure 5.6 A defined translation translocation system....84
TABLE LIST
Table 3.1 Purification of translation factors............85
Table 3.2 Purification of ribosomes and S100DEAE.........86
Table 3.3 HEPES and polymix buffer system................87
Table 3.4 The optimized condition for in vitro translation....88
dc.language.isoen
dc.subject全反射螢光顯微鏡zh_TW
dc.subject單分子zh_TW
dc.subject體外轉譯zh_TW
dc.subject核醣體zh_TW
dc.subjectTIRF (total internal reflection fluorescence) microscopeen
dc.subjectsingle moleculeen
dc.subjectin vitro translationen
dc.subjectribosomeen
dc.title建立用於單分子研究之體外轉譯系統zh_TW
dc.titleSetup of an in vitro Translation System for Single-Molecule Studyen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張功耀(Kung-Yao Chang),朱家瑩(Chia-Ying Chu)
dc.subject.keyword核醣體,體外轉譯,單分子,全反射螢光顯微鏡,zh_TW
dc.subject.keywordribosome,in vitro translation,single molecule,TIRF (total internal reflection fluorescence) microscope,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2011-07-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved