請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36417
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃義侑 | |
dc.contributor.author | Chia-Jung Wu | en |
dc.contributor.author | 吳嘉榮 | zh_TW |
dc.date.accessioned | 2021-06-13T08:00:06Z | - |
dc.date.available | 2008-07-30 | |
dc.date.copyright | 2005-07-30 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-22 | |
dc.identifier.citation | REFERENCES
1. William, H. Of the structure and diseases of articulating cartilages. Phil Trans 470, 514-521 (1743). 2. Mankin, H.J. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64, 460-466 (1982). 3. Buckwalter, J.A., Rosenberg, L.C. & Hunziker, E.B. Articular Cartilage and Knee Joint Function:Basic Science and Arthroscopy. (Raven Press, New York; 1990). 4. Langer, R. & Vacanti, J.P. Tissue engineering. Science 260, 920-926 (1993). 5. Palsson, B.O. & Bhatia, S.N. Tissue Engineering. Prentice Hall; 1st edition, 2003. 6. Martin, K.H., Slack, J.K., Boerner, S.A., Martin, C.C. & Parsons, J.T. Integrin connections map: to infinity and beyond. Science 296, 1652-1653 (2002). 7. Lu, L., Zhu, X., Valenzuela, R.G., Currier, B.L. & Yaszemski, M.J. Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop Relat Res, S251-270 (2001). 8. Nimni, M.E. Polypeptide growth factors: targeted delivery systems. Biomaterials 18, 1201-1225 (1997). 9. Whitaker, M.J., Quirk, R.A., Howdle, S.M. & Shakesheff, K.M. Growth factor release from tissue engineering scaffolds. J Pharm Pharmacol 53, 1427-1437 (2001). 10. Temenoff, J.S. & Mikos, A.G. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21, 431-440 (2000). 11. Buckwalter, J.A. & Mankin, H.J. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47, 477-486 (1998). 12. Cohen, N.P., Foster, R.J. & Mow, V.C. Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J Orthop Sports Phys Ther 28, 203-215 (1998). 13. Buckwalter, J.A. Articular cartilage. Instr Course Lect 32, 349-370 (1983). 14. Wirth, C.J. & Rudert, M. Techniques of cartilage growth enhancement: a review of the literature. Arthroscopy 12, 300-308 (1996). 15. Lu, L. & Mikos, A.G. Synthetic Bioresorbable Polymer Scaffolds.In Ratner, BD, Hoffman AS, Schoen FJ, Lemons JE(eds).Biomaterials Science. San Diego, Academic Press. 16. Kinner, B. & Spector, M. Smooth muscle actin expression by human articular chondrocytes and their contraction of a collagen-glycosaminoglycan matrix in vitro. J Orthop Res 19, 233-241 (2001). 17. Chicurel, M.E., Chen, C.S. & Ingber, D.E. Cellular control lies in the balance of forces. Curr Opin Cell Biol 10, 232-239 (1998). 18. van der Kraan, P.M., Buma, P., van Kuppevelt, T. & van den Berg, W.B. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage 10, 631-637 (2002). 19. Hunziker, E.B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10, 432-463 (2002). 20. Speer, D.P., Chvapil, M., Volz, R.G. & Holmes, M.D. Enhancement of healing in osteochondral defects by collagen sponge implants. Clin Orthop Relat Res, 326-335 (1979). 21. Kimura, T., Yasui, N., Ohsawa, S. & Ono, K. Chondrocytes embedded in collagen gels maintain cartilage phenotype during long-term cultures. Clin Orthop Relat Res, 231-239 (1984). 22. van Susante, J.L. et al. Culture of chondrocytes in alginate and collagen carrier gels. Acta Orthop Scand 66, 549-556 (1995). 23. Ponticiello, M.S., Schinagl, R.M., Kadiyala, S. & Barry, F.P. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 52, 246-255 (2000). 24. Pesakova, V., Stol, M. & Adam, M. Comparison of the influence of gelatine and collagen substrates on growth of chondrocytes. Folia Biol (Praha) 36, 264-270 (1990). 25. Homminga, G.N., Buma, P., Koot, H.W., van der Kraan, P.M. & van den Berg, W.B. Chondrocyte behavior in fibrin glue in vitro. Acta Orthop Scand 64, 441-445 (1993). 26. Whatley, J.S., Dejardin, L.M. & Arnoczky, S.P. The effect of an exogenous fibrin clot on the regeneration of the triangular fibrocartilage complex: an in vivo experimental study in dogs. Arthroscopy 16, 127-136 (2000). 27. Fortier, L.A., Nixon, A.J., Mohammed, H.O. & Lust, G. Altered biological activity of equine chondrocytes cultured in a three-dimensional fibrin matrix and supplemented with transforming growth factor beta-1. Am J Vet Res 58, 66-70 (1997). 28. Hendrickson, D.A. et al. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res 12, 485-497 (1994). 29. Haisch, A. et al. Preparation of a pure autologous biodegradable fibrin matrix for tissue engineering. Med Biol Eng Comput 38, 686-689 (2000). 30. Lu, J.X., Prudhommeaux, F., Meunier, A., Sedel, L. & Guillemin, G. Effects of chitosan on rat knee cartilages. Biomaterials 20, 1937-1944 (1999). 31. Lahiji, A., Sohrabi, A., Hungerford, D.S. & Frondoza, C.G. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 51, 586-595 (2000). 32. Suh, J.K. & Matthew, H.W. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21, 2589-2598 (2000). 33. Hirano, S., Tsuchida, H. & Nagao, N. N-acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials 10, 574-576 (1989). 34. Wong, M., Siegrist, M., Wang, X. & Hunziker, E. Development of mechanically stable alginate/chondrocyte constructs: effects of guluronic acid content and matrix synthesis. J Orthop Res 19, 493-499 (2001). 35. Stevens, M.M., Qanadilo, H.F., Langer, R. & Prasad Shastri, V. A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25, 887-894 (2004). 36. Bonaventure, J. et al. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res 212, 97-104 (1994). 37. Diduch, D.R., Jordan, L.C., Mierisch, C.M. & Balian, G. Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy 16, 571-577 (2000). 38. Hauselmann, H.J. et al. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix 12, 116-129 (1992). 39. Barbucci, R., Magnani, A., Rappuoli, R., Lamponi, S. & Consumi, M. Immobilisation of sulphated hyaluronan for improved biocompatibility. J Inorg Biochem 79, 119-125 (2000). 40. Knudson, W. et al. Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. Arthritis Rheum 43, 1165-1174 (2000). 41. Athanasiou, K.A., Niederauer, G.G. & Agrawal, C.M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17, 93-102 (1996). 42. Frenkel, S.R. & Di Cesare, P.E. Scaffolds for articular cartilage repair. Ann Biomed Eng 32, 26-34 (2004). 43. Chu, C.R. et al. Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29, 1147-1154 (1995). 44. Chu, C.R., Monosov, A.Z. & Amiel, D. In situ assessment of cell viability within biodegradable polylactic acid polymer matrices. Biomaterials 16, 1381-1384 (1995). 45. Ma, P.X., Schloo, B., Mooney, D. & Langer, R. Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J Biomed Mater Res 29, 1587-1595 (1995). 46. Shanmugasundaram, N. et al. Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 22, 1943-1951 (2001). 47. Madihally, S.V. & Matthew, H.W. Porous chitosan scaffolds for tissue engineering. Biomaterials 20, 1133-1142 (1999). 48. Zhang, Y. & Zhang, M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res 55, 304-312 (2001). 49. Zmora, S., Glicklis, R. & Cohen, S. Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials 23, 4087-4094 (2002). 50. Gould, R.P., Day, A. & Wolpert, L. Mesenchymal condensation and cell contact in early morphogenesis of the chick limb. Exp Cell Res 72, 325-336 (1972). 51. Hall, B.K. & Miyake, T. The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat Embryol (Berl) 186, 107-124 (1992). 52. Tamamura, Y. et al. Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem 280, 19185-19195 (2005). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36417 | - |
dc.description.abstract | 組織工程對於再生能力弱的關節軟骨重建相當重要。近年來組織工程開始研發由不同材料所混成的複合支架。這樣的複合支架結合了不同材料的優點,並將其缺點加以彌補。本研究針對由去乙醯幾丁聚醣和藻膠所組成的細胞支架,加以研究其應用於軟骨組織工程的潛力和對軟骨生長的影響。
由去乙醯幾丁聚醣所製成的細胞支架,其機械強度較不適合於體內培養。為了要增強幾丁聚醣支架的機械強度,而以不同的冷卻條件去製成去乙醯幾丁聚醣支架,來觀察冷卻條件對機械強度的影響。由掃描式電子顯微鏡進行支架的微結構觀察,結果顯示以緩慢冷卻的去乙醯幾丁聚醣支架,其微結構較以快速冷凍的支架較具有一致性。掃描式熱差分析儀的結果表示緩慢冷卻的去乙醯幾丁聚醣具有較好的結晶性,支持了電顯的結果。當去乙醯幾丁聚醣加入了交聯的藻膠後,其機械強度經由強度測試證明有明顯的增加。而在機械強度加強的同時,其孔隙度仍維持在80%以上,而有足夠空間使細胞生長。TPP雖然也可以對去乙醯幾丁醣支架進行交聯而增加其機械強度,但是內部的孔洞卻會產生塌陷而不利於細胞生長。 MTS測試的結果顯示軟骨細胞在接種的第二天內有顯著的增生。若加以生長因子的激刺,則細胞數量在長期的培養下將會增加。綜合上述,同時具有去乙醯幾丁聚醣和藻膠的優點,並強化其機械強度的混成支架,對於軟骨組織工程的應用有相當大的潛力。 | zh_TW |
dc.description.abstract | Tissue engineering for articular cartilage regeneration is important due to cartilage’s low self-repair ability. Recently the selection of tissue engineering scaffolds is focused on hybrid scaffold, which combines different advantages of several kinds of materials. In this study, a hybrid scaffold composed of chitosan and alginate was investigated for its potential for cartilage tissue engineering.
Chitosan scaffolds fabricated by slow cooling regime have more homogenous structure than scaffolds fabricated by rapid cooling regime. The homogenous structure is beneficial to mechanical strength of scaffolds. After chitosan scaffolds were introduced with cross-linked alginate, the mechanical strength of scaffolds was improved further. The porosity of hybrid scaffold composed of 2% chitosan and 1% alginate was more than 80%, which was sufficient for cell growth. Although chitosan scaffolds could be cross-linked by TPP, microstructure of chitosan scaffolds cross-linked by TPP wasn’t preserved. In comparison with TPP, adding cross-linked alginate can preserve scaffold’s microstructure and enhance mechanical strength at the same time. MTS assays show that chondrocytes proliferated well at first 2 days. After long-term culture the number of cells would increase under continuous stimulation of growth factors. Chondroctyes formed cell spheres within hybrid scaffold after in vitro culture for 20 days. These spheres might resemble the mesenchymal condensation during limb development in embryo. In conclusion, the hybrid scaffold which has both advantages of alginate and chitosan and better mechanical strength is competent to the application of cartilage tissue engineering. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:00:06Z (GMT). No. of bitstreams: 1 ntu-94-R92548049-1.pdf: 845778 bytes, checksum: dfec58603132b3caf54a8b9d006c28ab (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | Table of Contents
CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 3 2.1 Concept of Tissue Engineering 3 2.1.1 Cells 4 2.1.2 Scaffolds 4 2.1.3 Signal Factors 5 2.2 Composition and structure of articular cartilage 7 2.2.1 Chondrocytes 7 2.2.2 Extracellular Martix 7 2.2.2.1 Collagen 7 2.2.2.2 Proteoglycan 7 2.2.2.3 Non-collagenous proteins 8 2.2.2.4 Tissue fluid 8 2.3 Design of scaffold for cartilage engineering 9 2.3.1 General consideration of scaffold 9 2.3.2 Characteristics of Scaffold required in Cartilage Tissue engineering 9 2.4 Biodegradable materials used in cartilage tissue engineering 11 2.4.1 Protein-based polymers 11 2.4.2 Carbonhydrate-based polymers 12 2.4.3 Artificial polymers 15 2.5 Purpose of study 16 CHAPTER 3 MATERIALS AND METHODS 18 3.1 Chemicals 18 3.2 Solutions and Medium Preparation 19 3.3 Instruments 20 3.4 Experimental Methods 21 3.4.1 Chitosan Alginate hybrid Scaffolds Fabrication 21 3.4.2 Differential Scanning Calorimeter 22 3.4.3 Porosity measurement 22 3.4.4 Microstructure of hybrid scaffold observed by SEM 23 3.4.5 Mechanical test of hybrid scaffold 23 3.4.6 Chondrocytes isolation and culture 24 3.4.7 Cell counting 25 3.4.8 Cell activity MTS Assay 26 3.4.9 Histological analysis 27 CHAPTER 4 RESULTS AND DISSUSION 28 4.1 Microstructure of scaffolds fabricated by different cooling regime 28 4.2 DSC results of scaffolds fabricated by different cooling regime 30 4.3 HE stain for Hybrid scaffolds 30 4.4 Microstructure of hybrid scaffolds 34 4.5 Mechanical properties of hybrid scaffolds 37 4.6 Porosity of hybrid scaffolds 37 4.7 MTS results of chondrocytes cultured in hybrid scaffold 41 4.8 Histological analysis 43 CHAPTER 5 CONCLUSIONS 45 REFERENCES 46 | |
dc.language.iso | en | |
dc.title | 去乙醯幾丁聚醣-藻膠複合細胞支架在軟骨組織工程之研究 | zh_TW |
dc.title | Chitosan-Alginate Hybrid Scaffold for Cartilage Tissue Engineering | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉得任,鄭宏志,鍾次文 | |
dc.subject.keyword | 去乙醯幾丁聚醣,藻膠,組織工程,軟骨, | zh_TW |
dc.subject.keyword | chitosan,alginate,tissue engineering,cartilage, | en |
dc.relation.page | 49 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-22 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 825.96 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。