請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36412完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠(C. C. Yang) | |
| dc.contributor.author | Fang-Yi Jen | en |
| dc.contributor.author | 任芳儀 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:59:56Z | - |
| dc.date.available | 2005-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-22 | |
| dc.identifier.citation | Reference
[1.1] C. Klingshirn, Phys. Status Sloidi B 71, 547 (1975). [1.2] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Swgawa, Solid State Commun., 103, 459 (1997). [1.3] Tae-Hyoung Moon, Min-Chang Jeong, Woong Lee, Jae-Min Myoung, Appl. Surf. Sci., 240, 280 (2005). [1.4] N. Ohashi, K. Kataoka, T. Ohgaki, T. Miyagi, H. Haneda, K. Morinaga, Appl. Phys. Lett., 83, 4857 (2003). [1.5] P. Sharma, S. Kumar, K. J. Sreenivas, Mater. Res., 18, 545 (2003). [1.6] Q. Wan, C. L. Lin, X. B. Yu, T. H. Wang, Appl. Phys. Lett., 84, 124 (2004). [1.7] R. Katoh, A. Furube, K. Hara, S. Murata, H. Sugihara, H. Arakawa, M. Tachiya, J. Phys. Chem. B, 106, 12957 (2002). [1.8] S. B. Zhang, S.H. Wei, and Alex Zunger, Phys. Rev. B 63, 075205 (2002). [1.9] Park CH, Zhang SB, Wei S-H., Phys Rev B 66, 0732021 (2002). [1.10] Yamamoto T, Katayama-Yoshida H., Jpn. J. Appl. Phys. 38, L166 (1999). [1.11] Garces NY, Giles NC, Halliburton LE, Cantwell G, Eason DB, Reynolds DC, et al., Appl. Phys. Lett. 80, 1334 (2002). 26 [1.12] Minegishi K, Koiwai Y, Kikuchi Y, Yano K, Kasuga M, Shimizu A., Jpn. J. Appl. Phys. 36, L1453 (1997). [1.13] Guo X-L, Tabata H, Kawai T., J. Cryst. Growth 223, 135 (2001). [1.14] Kim K-K, Kim H-S, Hwang D-K, Lim J-H, Park S-J., Appl. Phys. Lett. 83, 63 (2003). [1.15] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982). [1.16] Y.-G. Jin, J.-W. Jeong, and K. J. Chang, Physica B 273-274, 1003 (1999). [1.17] Woong Lee1, Min-Chang Jeong, Sang-Woo Joo and Jae-Min Myoung, Nanotechnology 16, 764–768 (2005). [1.18] Alivov, Ya. I. Kalinina, E. V. Cherenkov, A. E.Look, D. C.Ataev, B. M.Omaev, A. K.Chukichev, M. V. Bagnall, D. M., Appl. Phys. Lett. 83, 4719 (2003). [1.19] Alivov, Ya I. Van Nostrand, J.E.Look, D.C. Chukichev, M.V. Ataev, B.M., Appl. Phys. Lett. 83, 2943 (2003). [1.20] Toru Aoki and Yoshinori Hatanaka, David C. Look, Appl. Phys. Lett. 76, 3257 (2000). [1.21] J. M. Bian, X. M. Li, C. Y. Zhang, L. D. Chen, and Q. Yao, Appl. Phys. Lett. 84, 3783 (2004). [1.22] B. P. Zhang, N. T. Binh, K. Wakatsuki, C. Y. Liu, Y. Segawa, and N. 27 Usami, Appl. Phys. Lett. 86, 032105 (2005). [1.23] T. Makino, C. H. Chia, N. T. Tuan, H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Appl. Phys. Lett. 77, 975 (2000). [1.24] http://www.rz.uni-karlsruhe.de/~lem/forschung/ZnO/ZnO.html. [1.25] B. K. Meyer, A. Polity, B. Farangis, Y. He, D. Hasselkamp, T. Krämer, C. Wang, U. Haboeck, and A. Hoffmann, Phys. Stat. Sol. (c) 1, 694 (2004). [1.26] Y. Zheng, J. C. Boulliard, A. Soyer and J. F. PeÂtroff, Acta Cryst. A 60, 339 (2004). [1.27] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Progress in Materials Science 50, 293 (2005). [1.28] Singh LK, Mohan H. Indian J Pure ApplPhys 1975;13:486. [1.29] Landolt-Börnstein, New Series Group III vol. 17, Springer (1982) [1.30] C. G. Kuper, G. D. Whitfied: Polarons and Excitons (1963 ) [1.31] Springer Tracts in Modern Physics 73: Exitons at High Density, H. Haken and S. Nikitine, Springer-Verlag (1975) ISBN 3-540-06943-7 [1.32] V. Kutzer, B. Lummer, R. Heitz, A. Hoffmann, I. Broser, E. Kurtz, and D. Hommel, J. Cryst. Growth 159, 776 (1996). [1.33] Zhao Dong-Xu et al, Chinese Phys. Lett. 21, 1640-1643 (2004). 28 [1.34] Dougtas Magde and Hervert Mahr, Phys. Rev. Lett. 24, 891 (1970). [1.35] Y. Chen, D. Bagnall, T. Yao, Mater. Sci. Eng. B 77 (2000) 190. [1.36] D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B.Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002). [1.37] K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B.P. Zhang, Y. Segawa, Thin Solid Films 433,131 (2003). [1.38] Th. Gruber, C. Kirchner, K. Thonke, R. Sauer, A. Waag, Phys. Stat. Sol. (a) 192, 166 (2002). [1.39] S.F. Chichibu, T. Yoshida, T. Onuma, H. Nakanishi, J. Appl. Phys. 91, 874 (2002). [1.40] B.P. Zhang , K. Wakatsuki , N.T. Binh , N. Usami , Y. Segawa, Thin Solid Films 449, 12 (2004). [1.41] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N.W. Emanetoglu, Y. Lu, IEEE Trans. Nanotechnol. 2, 50 (2003). [1.42] B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, and H. Koinuma, J. Phys. Chem. B 108, 10899 (2004). [2.1] Segawa Y, Phys. Status Solidi b 202, 669 (1997). [2.2] Tang Z K, Wong G K L and Yu P, Appl. Phys. Lett. 72, 3270 (1998). [2.3] Guide to Streak Camera, Hamamatsu Photonics K.K. (2002). [2.4] Dongxu Zhao, Yichun Liu, Dezhen Shen, Youming Lu, Ligong Zhang, and Xiwu Fan, J. Appl. Phys. 94, 5605 (2003). [2.5] Ohtomo A, Tamura K, Saikusa K, Takahashi K, Makino T, Segawa Y, Koinuma H and Kawasaki M, Appl.Phys. Lett. 75, 2635 (1999). [2.6] Matsui H, Saeki H, Tabata H and Kawai T, Japan. J. Appl. Phys. 42, 5494 (2003). [2.7] Makino T, Chia C H, Tuan Nguen T, Sun H D, Segawa Y, Kawasaki M, Ohtomo A, Tamura K and Koinuma H, Appl. Phys. Lett. 77, 975 (2000). [2.8] Gruber T, Kirchner C, Kling R, Reuss F and Waag A, Appl. Phys. Lett,. 84, 5359 (2004). [2.9] Ng H T, Li J, Smith M K, Nguyer P, Cassell A, Han J and Meyyappan M, Science 300, 1249 (2003). [2.10] Zhang B P, Wakatsuki K, Binh N T and Segawa Y, J. Appl. Phys. 96, 340 (2004). [2.11] B. P. Zhang, N. T. Binh, K. Wakatsuki and Y. Segawa, Appl. Phys. Lett. 84, 4098 (2004). 50 [2.12] B.P. Zhang, K. Wakatsuki , N.T. Binh , N. Usami , Y. Segawa, Thin Solid Films 449,12–19 (2004). [2.13] Kato, H.; Sano, M.; Miyamoto, K and Yao T., Jpn. J. Appl. Phys.42, 2241 (2003). [2.14] Zhao, Q. X.; Willander, M.; Morjan, R. E.; Hu, Q. H.; Campbell, E. E. B. Appl. Phys. Lett. 83, 165 (2003). [2.15] B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami, Appl. Phys. Lett. 83, 1635 (2003). [2.16] S. F. Yu, Clement Yuen, and S. P. Lau, W. I. Park and Gyu-Chul Yi, Appl. Phys. Lett. 84 (17), 3241 (2004). [3.1] B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, and K. Haga, Nanotechnology 15, S382 (2004). [3.2] K. Hazu, T. Sota, K. Suzuki, S. Adachi, S. F. Chichibu, G. Cantwell, D. B. Eason, D. C. Reynolds, and C. W. Litton, Phys. Rev. B 68, 033205 (2003). [3.3] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997). [3.4] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998). [3.5] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Nonlinear Opt. 18, 243 (1997). [3.6] Ya. E. Pokrovskii, Phys. Status Solidi (a) 11, 385 (1972). [3.7] R. W. Martin, Solid State Commun. 14, 369 (1974). [3.8] V. Kutzer, B. Lummer, R. Heitz, A. Hoffmann, I. Broser, E. Kurtz, and D. Hommel, J. Cryst. Growth 159, 776 (1996). [3.9] M. Nakayama, H. Ichida, and H. Nishimura, J. Phys. C 11, 7653 (1999). [4.1] V. V. Travnikov, A. Freiberg, S. F. Savikhin, J. Lumin. 47, 107 (1990). [4.2] T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa and H. Koinuma, Appl. Phys. Lett. 82, 532 (2003). [4.3] G. W. ‘t Hooft, W. A. J. A. van der Poel and L. W. Molenkamp, Phys. Rev. B 35, 8281 (1987). [4.4] GD Chen, M. Smith, JY Lin, HX Jiang , M. Asif Khan, CJ Sun. App. Phys. Lett. 67(12), 1653 (1995). [4.5] R. J. Elliot, phys. Rev. 108, 1384 (1957). [4.6] D. L. Dexter, Solid State Physics, edited by F. Seitz and D. Trunbull 6, 353 (Academic, New York, 1958). [4.7] C. H. Henry and K. Nassau, Phys. Rev. B 1, 1628 (1970). [4.8] J. Wilkinson, K. B. Ucer and R. T.Williams, Nuclear Instruments & Methods in Physics Research A 537, 66-70 (2005). [4.9] J. Feldmann et al., Phys. Rev. Lett. 59, 2337 (1987). [4.10] L. Bergman, M. Dutta, M. A. Stroscio, S. M. Komirenko, R. J. Nemanich, C. J. Eiting, D. J. H. Lambert, H. K. Kwon and R. D. Dupuis, Appl. Phys. Lett. 76, 1969 (2000). 107 [4.11] M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, J. Appl. Phys. 86, 3721 (1999). [4.12] E. H. Bogardus and H. B. Bebb, Phys. Rev. 176, 993 (1968). [4.13] F. E. Williams and H. Eyring, J. Chem. Phys. 15, 289 (1947). [4.14] H. Shibata, M. Watanabe, M. Sakai, K. Oka1, P. Fons, K. Iwata, A. Yamada1, K. Matsubara, K. Sakurai, H. Tampo, K. Nakahara, and S. Niki, Phys. Stat. Sol. (c) 1, No. 4, 872–875 (2004). [4.15] Hajime Shibata, Jpn. J. Appl. Phys. 37, 550 (1998). [4.16] P. Lefebvre, J. Alle`gre, B. Gil, A. Kavokine, and H. Mathieu, W. Kim and A. Salvador, A. Botchkarev and Hadis Morkoc, Phys. Rev. B 57, R9447 (1998). [4.17] S. Roorda, M. Chicoine, and R. Tabti, Appl. Phys. Lett. 67, 17 (1995). [4.18] S. F. Chichibu, T. Azuhata, T. Sota, and T. Mukai, Appl. Phys. Lett. 79, 341 (2001) [4.19] A. Kaneta, T. Mutoh, Y. Kawakami, S. Fujita, G. Marutsuki, Y. Narukawa, and T. Mukai, Appl. Phys. Lett. 83, 3462 (2003) [4.20] L. C. Andreani, F. Tassone, and F. Bassani, Solid State Commun. 77, 641 (1991) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36412 | - |
| dc.description.abstract | 在本研究中我們有系統的探討在氧化鋅薄膜材料中的光學性質。首先我們比較不同型態氧化鋅樣品其自由激子及束縛激子溫變衰減時間,由其螢光頻譜可以看出以有機金屬化學氣相磊晶法成長之氧化鋅在低壓的成長條件下,受體較容易產生,導致較短的激子生命。在高壓下成長的氧化鋅薄膜,和雜質相關的低能量發光頻帶較弱,代表較佳的樣品品質,此類樣品有較長的激子生命期。
為了進一步暸解在高功率激發下激子的多體效應,我們進行一系列變溫及變激發功率的發光量測實驗。我們觀察到雙激子以及施體束縛雙激子的發光特性。由兩階段的衰變期時間常數,我們成功的建立一個四能階的模型來解釋在自由激子、施體束縛激子、雙激子以及施體束縛雙激子間的載子流動。 另外,我們將自由及施體束縛激子視為一混合系統,利用熱衰減理論來探討其激子發光生命期。這些自由及束縛激子的發光生命期成功的結合震盪強度在頻寬改變關係中的預測,顯示自由激子的發光模型在熱能小於施體束縛能的情況下,可成功的用於束縛激子上。 | zh_TW |
| dc.description.abstract | In this research, we systematically investigate the optical properties in a
ZnO thin film. First, we compare the photoluminescence spectrum and temperature-dependent PL decay time of FX and D0X in ZnO samples of different morphologies. PL spectra indicate that growth at lower pressures in MOCVD may enhance the incorporation of acceptors in ZnO and hence lead to a shorter lifetime in TRPL calibration. The lack of lower-energy impurity-related emission in high-pressure growth implies the high quality characteristic of the ZnO thin film. This leads to the long lifetime of FX in thin film due to the exciton radiative lifetime nature over the thermal quenching effect. Second, for further understanding the optical properties of excitonic manybody interaction under high excitation, we observe not only the emission line (the M line) of XX, but also that (the D0M line) of donor-bound biexciton (D0XX) in the excitation-power dependent measurement. The calibrated two-stage decay times are used to build the model of ultrafast biexciton dynamics in such a ZnO sample. The interplay between free exciton (FX), donor-bound exciton (D0X), biexciton (XX) and donor-bound biexciton (D0XX) in ZnO will be discussed. We explain the trends of the calibrated decay times successfully with a four-level model. III Finally, the radiative lifetime of the mixed system of FX and D0X is calibrated based on the thermal quenching rate of the integrated PL intensity of the system. With the radiative lifetime data, the FX radiative lifetimes are estimated by using a theoretical relation between the lifetime and the spectral width. From the results of FX radiative lifetime, we also calibrate the D0X radiative lifetimes. The results support our model that the D0X radiative behavior is similar to that of FX when the thermal energy is smaller than the donor binding energy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:59:56Z (GMT). No. of bitstreams: 1 ntu-94-R92941017-1.pdf: 4158168 bytes, checksum: 81f1672770bbdd3b9f078a9b19f4242f (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Contents
中文摘要……………………………..……………….…………..………I Abstract……………………………………………………….…..……...II Contents……………………………………………………...…….……IV Chapter 1 Introduction……………………………..……………....……1 1.1 Review of ZnO-based Devices…………………………...…….1 1.2 Review of Material Properties of ZnO-basedSemiconductors……………………………………..………….2 1.2.1 Structural Doping in ZnO……………………………......2 1.2.2 n- and p-type Doping…………………………………......3 1.2.3 ZnO-related Compounds and LED Application……….4 1.2.4 Material properties of ZnO...............................................6 1.3 Review of Optical Properties of ZnO……………………..…..7 1.3.1 Free Exciton (FX)………………………………..……….7 1.3.2 Bound Exciton1…………………………..……………..10 1.3.3 Two-electron-satellite (TES)……………..……………..12 1.3.4 Donor-acceptor Pair (DAP)……………..……………...13 1.3.5 Phonon Replica……………………………..…………...14 1.3.6 Biexciton and Bound-biexciton………………..……….15 1.3.7 Other phenomena under high Excitation……………...18 V 1.4 Effects of Growth Condition Control During Metalorganic Chemical Vapor Deposition (MOCVD)……………………...19 1.4.1 Advantages of MOCVD Growth of ZnO……….………19 1.4.2 Effects of Growth temperature on the Characteristics of ZnO Epitaxial Films……………………….……………20 1.4.3 Effects of Growth Pressure on the Characteristics of ZnO Epitaxial Films………………………………...........……22 1.5 Research Motivations and Topics….…………..……………...23 References………………………………………………………..…25 Chapter 2 Photoluminescence and Exciton Dynamics in ZnO with Different Growth Condition…………………..……………..37 2.1 Introduction…………………………………………………….37 2.2 Sample Preparation……………………………………………38 2.3 Scanning Electron Microscopy (SEM) Results……………….39 2.4 Optical Analysis Methods……………………………………...41 2.4.1 Photoluminescence (PL) Setup…………………………41 2.4.2 Photoluminescence (PL) Results………………………42 2.4.3 Time-resolved Photoluminescence (TRPL) Setup…....45 2.4.4 Time-resolved Photoluminescence (TRPL) Results…..47 VI 2.5 Summary………………………………………………..………48 References…………………………………………………………..49 Chapter 3 Ultrafast Biexciton Dynamics in a ZnO Thin Film……….60 3.1 Introduction…………………………………………………….60 3.2 Sample Preparation……………………………………………61 3.3 Material Characteristics……………………………………….62 3.3.1 Scanning Electron Microscopy (SEM)………………...62 3.3.2 Transmission Electron Microscopy (TEM) Results…..62 3.3.3 X-ray Diffraction (XRD) Patterns……………………..63 3.4 Optical Characterization Methods……………………………64 3.4.1 Excitation-power-dependent PL Measurements………65 3.4.2 Excitation-power-dependent TRPL Measurements…..70 3.5 Summary………………………………………………………..75 References…………………………………………………………..77 Chapter 4 Temperature-dependent Exciton Dynamics in a ZnO Thin Film…………………………………………………………88 4.1 Introduction…………………………………………………….88 4.2 Review of the Theories of Exciton Oscillator Strength and Coherence Volume……………………………………………..90 VII 4.3 Optical Analysis………………………………………………...95 4 . 3 . 1 Negative Thermal Quenching Curve in Photoluminescence……………………………………….95 4.3.2 Calibration of Decay Time…………………………….....98 4.3.3 Calibration of Radiative and Nonradiative Decay Time …………………………………………………..…………100 4.4 Summary………………………………….…………………….104 References……………………………………………………….….106 Chapter 5 Conclusions..................................................................………115 | |
| dc.language.iso | en | |
| dc.subject | 激子 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | exciton | en |
| dc.subject | ZnO | en |
| dc.title | 以時域解析螢光光譜方法研究氧化鋅內之超快激子動態 | zh_TW |
| dc.title | Study of Ultrafast Exciton Dynamics in Zinc-Oxide with Time-Resolved Photoluminescence Spectroscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳志毅(Chih-I Wu),黃建璋(Jian-Jang Huang),蔡睿哲(Jui-Che Tsai) | |
| dc.subject.keyword | 激子,氧化鋅, | zh_TW |
| dc.subject.keyword | exciton,ZnO, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 4.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
