Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36405
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張能復
dc.contributor.authorRong-jing Hsuen
dc.contributor.author許榮桀zh_TW
dc.date.accessioned2021-06-13T07:59:41Z-
dc.date.available2005-07-28
dc.date.copyright2005-07-28
dc.date.issued2005
dc.date.submitted2005-07-22
dc.identifier.citationBerkowicz, R. and L.P. Prahm, 1982: Evaluation of the profile method for estimation of surface fluxes of momentum and heat. Atmospheric Environment, 16, 2809-2819.
Blackadar, A.K. and H. Tennekes, 1968: Asymptotic similarity in neutral, barotropic planetary boundary layers. J. Atmos. Sci, 25, 1015-1020.
Briggs, G.A., 1982: Simple substitutes for the Obukhov length. Proceeding, 3rd Joint Conference on Applic. of Air Poll. Meteor., American Meteorological Society, Boston, MA, pp. 68-71.
Briggs, G.A., 1985: Analytical parameterizations of diffusion: The convective boundary layer. J. Clim. and Appl. Meteor., 24, 1167-1186.
Douglas, S. and R. Kessler, 1988: User's guide to the diagnostic wind field model (Version 1.0). Systems Applications, Inc., San Rafael, CA, 48 pp.
Dyer, A.J. and B.B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715-721.
EPA, 1993: Interagency Workgroup on Air Quality Modeling (IWAQM) Phase I report: Interim recommendations for modeling long range transport and impacts on regional visibility. U.S. EPA, Research Triangle Park, NC.
EPA, 1989: Project Report User’s Guide to the CTDM Meteorological Preprocessor Program. EPA Publication No. EPA/600/8-88/004.
EPA, 1995: Testing of meteorological and dispersion models for use in regional air quality modeling. Report prepared for U.S. EPA by Sigma Research/EARTH TECH, Concord, MA.
EPA, 1998: Interagency Workgroup on Air Quality Modeling (IWAQM) Phase 2 Summary Report and Recommendations for Modeling Long-Range Transport Impacts. EPA Publication No. EPA-454/R-98-019.
Garratt, J.R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915-929.
Goodin, W.R., G.J. McRae and J.H. Seinfeld, 1980: An objective analysis technique for constructing three-dimensional urban scale wind fields. J. Appl. Meteorol., 19, 98-108.
Hanna, S.R., L.L. Schulman, R.J. Paine, J.E. Pleim and M. Baer, 1985: Development and evaluation of the Offshore and Coastal Dispersion Model. JAPCA, 35, 1039-1047.
Holtslag, A.A.M. and A.P. van Ulden, 1982: Simple estimates of nighttime surface fluxes from routine weather data. KNMI Scientific Report, W.R. 82-4, 11 pp.
Holtslag, A.A.M. and A.P. van Ulden, 1983: A simple scheme for daytime estimates of the surface fluxes from routine weather data. J. Clim. and Appl. Meteor., 22, 517-529.
Horst, T.W. and J.C. Doran, 1986: Nocturnal drainage flow on simple slopes. Bound. Layer Meteor., 34, 263-286.
O'Brien, J.J., 1970: A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sci., 27, 1213-1215.
Oke, T.R., 1982: The energetic basis of the urban heat island. Quart. J.R. Met. Soc., 108, 1-24. Pearson II, F., 1990: Map Projections: Theory and Applications. CRC Press, Inc., Boca Raton, FL., 372 pp.
Scire, J.S. and F.R. Robe, 1997: Fine-scale application of the CALMET meteorological model to a complex terrain site. Paper 97-A1313, AWMA 90th Annual Meeting & Exhibition, June 8-13, Toronto, Ontario, Canada.
Scire, J.S., E.M. Insley and R.J. Yamartino, 1990b: Model formulation and user's guide for the CALMET meteorological model. Sigma Research Corp., Concord, MA.
Steyn, D.G. and T.R. Oke, 1982: The depth of the daytime mixed layer at two coastal locations: A model and its validation. Bound. Layer Meteor., 24, 161-180.
van Ulden, A.P. and A.A.M. Holtslag, 1985: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Clim. and App. Meteor., 24, 1196-1207.
Venkatram, A., 1980a: Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations. Boundary Layer Meteorology, 19, 481-485.
Venkatram, A., 1980b: Estimation of turbulence velocity scales in the stable and the unstable boundary layer for dispersion applications. In: Eleventh NATO-CCMS International Technical Meeting on Air Pollution Modeling and its Application. 54-56.
Zilitinkevich, S.S., 1972: On the determination of the height of the Ekman boundary layer. Boundary Layer Meteorology, 3, 141-145.
胡人傑,1999,空氣品質模式氣象參數模組化之研究及其方法之建立,台灣大學環境工程研究所碩士論文。
陳世芳,2004,混合層高度診斷方法之研究,台灣大學環境工程研究所碩士論文。
蘇智獻,2004,高屏地區混合層高度之實場觀測研究,輔英科技大學環境工程與科學研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36405-
dc.description.abstract環境中混合層高度是影響大氣中空氣污染物質的擴散與混合能力的主要因素之一,當混合層高度越高,大氣層越能提供稀釋其中空氣污染物質的空間,使空氣污染的程度降低。因此對於空氣污染防制上,混合層高度的推估是一個重要參考依據。過去對於混合層高度的推估大多利用探空溫剖配合地面溫度依乾絕熱遞減率線與其相交之高度,定為混合層高度。但此方法缺點在於如果地表溫度的些微波動,或是探空溫剖因氣候影響無法呈現正常遞減的現象,都將導致所推估的混合層高度不穩定且偏向低估的情況。然而,造成混合層高度發展的機制必須同時考慮因日夜不同所產生的熱浮力紊流與機械紊流兩種方法。熱浮力紊流與日間太陽輻射的加熱效應所導致,而當夜晚來臨,機械紊流則由近地層風切機械力決定。本研究利用CALMET氣象前處理模式模擬2003年台灣混合層高度發展,其模式採用地表能量收支平衡法以及引用摩擦風速量值來進行模擬,而模擬結果則以實測資料所推算的混合層高度來加以比對其合理性,實測資料包括環保署北中南三地的逆溫儀即時溫剖以及台灣南部混合層高度實場觀測計畫。
根據本研究結果發現,CALMET與實測資料兩者所得混合層高度結果具有高度的線性相關,並且在時間上發展趨勢相同。以地表上的混合層高度而言,其混合層高度變化與對應之可感熱通量呈正相關,而中午時分為一日內混合層高度發展最高的階段,約為一千公尺左右,夜間的混合層高度變化則與摩擦風速大小有關,分為平地區域偏低為兩百公尺左右,山區與海陸交界處則有較高的混合層高度發展。至於海面上混合層高度則不分日夜一致穩定,主要由海風所形成的摩擦風速影響其高度變化。而CALMET模擬之日間地表上混合層高度於空間上的變化,在同一時刻下,太陽輻射加熱效應一定時,模擬區域內的雲量越多的地方會導致混合層高偏低,而在同一時間同一雲量區域內,其區域內地表參數之鮑溫率越高的地方所獲得之混合層高度發展越快且高度較高。
zh_TW
dc.description.abstractMixing layer height(MH) is very important for that the air pollutants in the atmosphere can be transferred vertically and diluted. As MH develops much higher, the signification deterioration episodes happen much fewer. That is the reason the air pollution science focus the MH in the environment discussions.
As so far, the MH can be judged by the upper air vertical temperature structure and measured surface temperature. The MH is set on where the surface temperature decreasing on the adiabatic lapse rate along the altitude meets the upper air temperature. Unfortunately the method often makes the mistake as MH as the unstable surface temperature and not very well for the lapse of upper air temperature slope. It should take more consideration for the MH development. Generally the mechanisms of MH development are different. For the daytime MH, heat buoyant turbulence production determines the vertical extent of dispersion because of on unstable situation, on the contrary, in the stable MH at nighttime, the mechanism is mechanical turbulence.
In this study, the CALMET model with the characteristic MH simulations of above mechanisms is used to simulate Taiwan MHs in 2003. In order to confirm results of simulations, they are compared with the MH calculated by real measured data including MTP5 and observations project of MH in south Taiwan.
From the result of the study, the daytime overland MH is influenced by overland sensible heat flux, in the other side, nighttime overland MH and oversea MH get the friction wind speed to judge. But when daytime overland MH get more cloud above, MH gets developed slowly. If the same cloud above somewhere on the same moment, the higher Bowen Ratio of the section gets higher MH and speeds MH development.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:59:41Z (GMT). No. of bitstreams: 1
ntu-94-R92541101-1.pdf: 3483043 bytes, checksum: 92fb0ca530ee9b3aecf15e231f4206ef (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents第一章、前言
1.1 研究背景...........................................1
1.2 CALMET模式的發展起源...............................2
1.3 研究目標...........................................4
第二章、文獻回顧
2.1 混合層高度之定義...................................5
2.2 大氣穩定度.........................................6
2.2.1 Pasquill穩定度...................................6
2.2.2 莫寧荷夫尺度.....................................8
2.3 混合層高度計算方法介紹.............................9
2.3.1 Holzworth(1964) Method...........................9
2.3.2 Benkley & Schulman(1979) Method.................10
2.3.3 Zilitinkevich(1972) Method......................11
2.3.4 Deardorff(1972) Method..........................11
2.3.5 聲波雷達法(1990)................................12
2.3.6 微波遙測法(1995)................................12
2.4 地表能量收支平衡法................................13
2.4.1 CALMET於陸地上日間混合層高度之計算方法..........19
2.4.2 CALMET於陸地上夜間混合層高度之計算方法..........22
2.4.3 CALMET於海面上日夜間混合層高度之計算方法........23
第三章、研究方法
3.1 研究流程..........................................24
3.2 CALMET模式運作方法................................26
3.2.1 輸入檔的編排....................................26
3.2.2 控制檔的設定....................................29
3.2.3 輸出檔的處理....................................30
3.3 混合層高度比對方法................................30
3.3.1 MTP-5即時探空溫剖...............................30
3.3.1.1 儀器設置與設備說明............................30
3.3.1.2 計算混合層高度之方法..........................31
3.3.2 2003年混合層高度觀測計畫........................33
3.3.2.1 觀測工作安排..................................33
3.3.2.2 混合層高度之判讀..............................34
第四章、結果與討論
4.1 CALMET與實測資料比對混合層高度結果之定量討論......36
4.1.1 比對個案一之結果與討論:台北混合層高度..........37
4.1.2 比對個案二之結果與討論:台中混合層高度..........43
4.1.3 比對個案三之結果與討論:高雄混合層高度..........44
4.1.4 比對個案四之結果與討論:高屏混合層高度..........45
4.1.5 統計各混合層高度結果之相關係數..................46
4.2 CALMET模擬台灣地區混合層高度之定性討論............47
4.2.1 2003年05/20早上八點之台灣地區混合層高度變化.....48
4.2.2 2003年05/20中午十二點之台灣地區混合層高度變化...50
4.2.3 2003年05/20晚上八點之台灣地區混合層高度變化.....51
第五章、結論與建議
5.1 結論..............................................54
5.2 建議..............................................56
參考文獻...............................................57
附錄
附錄A、CALMET輸入檔編排設定與變數說明..................60
附錄B、CALMET控制檔參數之設定..........................89
附錄C、混合層高度比對方法之相關圖表匯整................96
附錄D、第四章相關圖表匯整..............................99
附錄E、CALMET模擬之盲點...............................130
附錄F、鮑溫率設定方法之改進...........................135
dc.language.isozh-TW
dc.title以CALMET模式模擬台灣地區混合層高度zh_TW
dc.titleSimulate the Mixing Layer Height of Taiwan by CALMET Modelen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊秉潔,林清和,蔡俊鴻,張艮輝
dc.subject.keyword混合層高度,可感熱通量,鮑溫率,zh_TW
dc.subject.keywordMixing layer height,CALMET,Sensible heat flux,Bowen ratio,en
dc.relation.page135
dc.rights.note有償授權
dc.date.accepted2005-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
3.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved