Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36402
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃耀輝,張靜文
dc.contributor.authorWan-Yun Chengen
dc.contributor.author鄭宛芸zh_TW
dc.date.accessioned2021-06-13T07:59:35Z-
dc.date.available2005-08-03
dc.date.copyright2005-08-03
dc.date.issued2005
dc.date.submitted2005-07-22
dc.identifier.citationArana,I., Santorum,P., Muela,A., and Barcina,I. 1999. Chlorination and ozonation of waste-water: comparative analysis of efficacy through the effect on Escherichia coli membranes. J. Appl. Microbiol. 86:883-888.
Benin,A.L., Benson,R.F., and Besser,R.E. 2002. Trends in Legionnaires disease, 1980-1998: declining mortality and new patterns of diagnosis. CID 35:1039-1046.
Bukau,B. and Horwich,A.L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351-366.
Cargill,K.L. and Pyle,B.H. 1992. Effects of culture conditions and biofilm formation on the iodine susceptibility of Legionella pneumophila. Can. J. Microbiol. 38:423-429.
Cayla,J.A., Maldonado,R., Gonzalez,J., Pellicer,T., and Ferrer,D. 2001. A small outbreak of Legionnaires' disease in a cargo ship under repair. Eur Respir J 17:1322-1327.
CDC 1997. Guidelines for Prevention of Nosocomial Pneumonia. MMWR 46:1-79.
Cianciotto,N.P. and Fields,B.S. 1992. Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc. Natl. Acad. Sci. 89:5188-5191.
Cronan,J.E. 1975. Thermal regulation of the membrane lipid compositon of Escherichia coli. J. Biol. Chem. 250:7074-7077.
Darelid,J., Lofgren,S., and Malmval,B.E. 2002. Control of nosocomial legionnaires' disease by keeping the circulating hot water temperature above 55c: experience from a 10-year surveillance programme in a district general hospital. J. Hosp. Infect. 50:213-219.
Darnell,J. 1995. Nucleic acids, the Genetic code, and Protein synthesis. In Molecular cell biology, 3 ed. (eds. H Lodish, D Baltimore, A Berk, SL Zipursky, P Matsudaira, and J Darnell), Scientific American Books: New York.
Davies,D.H., Hill,E.C., Howells,C.H.L., and Ribeiro,C.D. 1985. Legionella pneumophila in coal miners. Br. J. Ind. Med. 42:421-425.
Dennis,P.J., Green,D., and Jones,B.P.C. 1984. A note on the temperature tolerance of Legionella. J. Appl. Bac. 56:349-350.
Domingue,E.L., Tyndall,R.L., Mayberry,W.R., and Pancorbo,O.C. 1988. Effects of three oxidizing biocides on Legionella pneumophila serogroup 1. Appl. Environ. Microbiol. 54:741-747.
EPA 1999. Legionella: human health criteria document.
Ezzeddine,H., Van Ossel,C., Delmee,M., and Wauters,G. 1989. Legionella spp. in a hospital hot water system: effect of control measures. J. Hosp. Infect. 13:121-131.
Fernandez,J.A., Lopez,P., Orozco,D., and Merino,J. 2002. Clinical study of an outbreak of Legionnaire's disease in Alcoy, Southeastern Spain. Eur J Clin Microbiol Infect Dis 21:729-735.
Fernandez,R.C., Logan,S.M., Lee,S.H.S., and Hoffman,P.S. 1996. Elevated levels of Legionella pneumophila stress protein Hsp60 early in infection of human monocytes and L929 cells correlate with virulence. Infect. Immun. 64:1968-1976.
Fiksdal,L. and Tryland,I. 1999. Effect of u.v. light irradiation, starvation and heat on Escherichia coli beta-D-galactosidase activity and other potential viability parameters. J. Appl. Microbiol. 87:62-71.
Fliermans,C.B., Cherry,W.B., Orrison,L.H., Smith,S.J., and Tison,D.L. 1981. Ecological distribution of Legionella pneumophila. Appl. Environ. Microbiol. 41:9-16.
Fry,A.M., Rutman,M., Allan,T., Scaife,H., and Salehi,E. 2003. Legionnaires' disease outbreak in an automobile engine manufactureing plant. JID 187:1015-1018.
Garduno,R.A., Faulkner,G., Trevors,M.A., Vats,N., and Hoffman,P.S. 1998. Immunolocalization of Hsp60 in Legionella pneumophila. J. Bacteriol. 180:505-513.
Giliberti,G., Naclerio,G., Martirani,L., Ricca,E., and De Felice,M. 2002. Alteration of cell morphology and viability in a recA mutant of Streptococcus thermophilus upon induction of heat shock and nutrient starvation. Gene 295:1-6.
Gotz,H.M., Tegnell,A., De Jong,B., Broholm,K.A., Kuusi,M., Kallings,I., and Ekdahl,K. 2001. A whirlpool associated outbreak of Pontiac fever at a hotel in Northern Sweden. Epidemiol Infect 126:241-247.
Gunasekera,T.S., Sorensen,A., Attfield,P.V., Sorensen,S.J., and Veal,D.A. 2002. Inducible gene expression by nonculturable bacteria in milk after pasteurization. Appl. Environ. Microbiol. 68:1988-1993.
Haas,C.N. and Engelbrecht,R.S. 1980. Physiological alterations of vegetative microorganisms resulting form chlorination. J. WPCF 52:1976-1989.
Harley,V.S., Drasar,B.S., and Tovey,G. 1997. The ultrastructure of stressed Legionella pneumophila. Microbios 91:73-78.
Helbig,J.H., Luck,P.C., Steinert,M., Jacobs,E., and Witt,M. 2001. Immunolocalization of the Mip protein of intracellularly and extracellularly grown Legionella pneumophila. Lett. in Appl. Micriobiol. 32:83-88.
Helms,C.M., Massanari,M., Wenzel,R., and Pfaller,M.A. 1988. Legionnaires' disease associated with a hospital water system. JAMA 259:2423-2427.
Hoffman,P.S. and Garduno,R.A. 1999. Surface-associated heat shock proteins of Legionella pneumophila and Helicobacter pylori: roles in pathogenesis and immunity. Infect. Dis. Obs. Gynec. 7:58-63.
Holtmann,G., Brigulla,M., Steil,L., Schutz,A., Barnekow,K., Volker,U., and Bremer,E. 2004. Rsb V-independent induction of the sigB-dependent general stress regulon of Bacillus subtilis during growth at high temperature. Appl. Environ. Microbiol. 186:6150-6158.
HSE 1999. Legionnaires' disease: a guide line for employers. Health and Safety Excutive books: Caerphilly.
Hurst,A. 1977. Bacterial injury: a review. Can. J. Microbiol. 23:934-944.
Jenkins,D.E., Schultz,J.E., and Matin,A. 1988. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J. Bacteriol. 170:3910-3914.
Johnston,M.D. and Brown,M.H. 2002. An investigation into the changed physiological state of Vibrio bacteria as a survival mechanism in response to cold temperatures and studies on their sensitivity to heating and freezing. J. Appl. Microbiol. 92:1066-1077.
Kilvington,S. and Price,J. 1990. Surival of Legionella pneumophila within cysts of Acanthamoeba polyphaga following chlorine exposure. J. Appl. Bac. 68:519-525.
Kruger,E. and Hecker,M. 1998. The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J. Bacteriol. 180:6681-6688.
Kuchta,J.M., States,S.J., McNamara,A.M., and Wadowsky,R.M. 1983. Susceptibility of Legionella pneumophila to chlorine in tap water. Appl. Environ. Microbiol. 46:1134-1139.
Lehninger,A.L. 1993. Lipid biosynthesis. In Principles of Biochemistry, 2 ed. (eds. AL Lehninger, DL Nelson, and MM Cox), Worth Publishers: New Your.
Lisle,J.T., Broadaway,S.C., Prescott,A.M., Pyle,B.H., Fricker,C., and McFeters,G.A. 1998. Effects of starvation on physiological activity and chlorine disinfection resistance in Escherichia coli O157:H7. Appl. Environ. Microbiol. 64:4658-4662.
Lisle,J.T. and McFeters,G.A. 1999. The use of multiple indices of physiological activity to access viability in chlorine disinfected Escherichia coli O157:H7. Lett. in Appl. Micriobiol. 29:42-47.
Mahoney,F.J., Hoge,C.W., Farley,T.A., Barbaree,J.M., Breiman,R.F., Benson,R.F., and McFarland,L.M. 1992. Communitywide outbreak of Legionnaires' disease associated with a grocery store mist machine. J. Infect. Dis. 165:736-739.
Marquis,H., Doshi,V., and Portnoy,D.A. 1995. The broad-range phopholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect. Immun. 63:4531-4534.
Marston,B.J., Plouffe,J.F., File,T.M., Hackman,B.A., Salstrom,S.J., and Lipman,H.B. 1997. Incidence of community-acquired pneumonia requiring hospitalization. Arch Intern Med 157:1709-1718.
Martin,A. 1991. The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol. Microbiol. 5:3-10.
Miuetzner,S., Schwille,R.C., Farley,A., Wald,E.R., and Ge,J.H. 1997. Efficacy of thermal treatment and copper-silver ionization for controlling Legionella pneumophla in high-volume hot water plumbing systems in hospitals. Am. J. Infect. Control 25:452-457.
Miyamoto,M., Yamaguchi,Y., and Sasatsu,M. 2000. Disinfectant effects of hot water, ultraviolet light, silver ions and chlorine on strains of Legionella and nontuberculous mycobacteria. Microbios 101:7-13.
Molecular Probes 2004. LIVE/DEAD BacLight. Bacterial Viability Kits. Molecular Probes.
Morton,S., Bartlett,C., Bibby,L.F., Hutchinson,D.N., Dyer,J.V., and Dennis,P.J. 1986. Outbreak of legionnaires' disease from a cooling water sytem in a power station. Br. J. Ind. Med. 43:630-635.
Mulazimoglu,L. 2001. Can Legionnaires disease be diagnosed by clinical criteria? A creital review. Chest 120:1049-1053.
Muraca,P., Stout,J.E., and Yu,V.L. 1987. Comparative assessment of chlorine, heat, ozone, and UV light for killing Legionella pneumophila within a model plumbing system. Appl. Environ. Microbiol. 53:447-453.
Murga,R., Forster,T.S., Brown,E., Pruckler,J.M., Fields,B.S., and Donlan,R.M. 2001. Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 147:3121-3126.
Ohno,A., Kato,N., Yamada,K., and Yamaguchi,K. 2003. Factors influencing survival of Legionella pneumophila serotype 1 in hot spring water and tap water. Appl. Environ. Microbiol. 69:2540-2547.
OSHA 1999. Legionnaires' disease. In OSHA Technical Manual.
Paszko-Kolva,C., Shahamat,M., and Colwell,R.R. 1992. Long-term survival of Legionella pneumophila serogroup 1 under low-nutrient conditions and associated morphological changes. FEMS Microbiol. Ecology 102:45-55.
Patterson,W.J., Seal,D.V., Curran,E., Sinclair,T.M., and McLuckie,J.C. 1994. Fatal nosocomial Legionnaires' disease: relevance of contamination of hospital water supply by temperature-dependent buoyancy-driven flow from spur pipes. Epidemiol Infect 112:513-525.
Plouffe,J.F., Webster,L.R., and Hackman,B. 1983. Relationship between colonization of hospital buildings with Legionella pneumophila and hot water temeratures. Appl. Environ. Microbiol. 46:769-770.
Power,K.N., Schneider,R.P., and Marshall,K.C. 1997. The effect of growth conditions on survival and recovery of Klebsilla oxytoca after exposure to chlorine. Wat. Res. 31:135-139.
Ramirez,G.W., Alonso,J.L., Villanueva,A., Guardino,R., and Basiero,J.A. 2000. A rapid, direct method for assessing chlorine effect on filamentous bacteria in activated sludge. Wat. Res. 34:3894-3898.
Ranford,J.C., Coates,A.R.M., and Henderson,B. 2000. Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones. Exp. Rev. Mol. Med. 15:1-17.
Rockabrand,D., Austin,T., Kaiser,R., and Blum,P. 1999. Bacterial growth state distinguished by single-cell protein profiling: does chlorination kill coliforms in municipal effluent? Appl. Environ. Microbiol. 65:4181-4188.
Rosen,R., Buttner,K., Becker,D., Nakahigashi,K., Yura,T., Hecker,M., and Ron,E.Z. 2002. Heat shock proteome of Agrobacterium tumefaciens: evidence of new control system. J. Bacteriol. 184:1772-1778.
Sabria,M. and Yu,V.L. 2002. Hospital-acquired legionellosis: solutions ofr a preventable infection. The Lancet 2:368-373.
Saby,S., Leroy,P., and Block,J.C. 1999. Escherichia coli resistance to chlorine and glutathione synthesis in response to oxygenation and starvation. Appl. Environ. Microbiol. 65:5600-5603.
Scharf,C., Riethdorf,S., Ernst,H., Engelmann,S., Volker,U., and Hecker,M. 1998. Thioredoxin is an essential protein induced by multiple stresses in Bacillus substilis. J. Bacteriol. 180:1869-1877.
Schirmer,E.C., Glover,J.R., Singer,M.A., and Lindquist,S. 1996. HSP100/Clp proteins: a common mechanism explains diverse functions. TIBS 21:289-296.
Seka,M.A., Hammes,F., and Verstraete,W. 2003. Predicting the effects of chlorine on the micro-organisms of filamentous bulking activated sludges. Appl. Microbiol. Biotechnol. 61:568.
Skaliy,P., Thompson,T.A., Gorman,G.W., and Morris,G.K. 1980. Laboratory studies of disinfectants against Legionella pneumophila. Appl. Environ. Microbiol. 40:697-700.
Snyder,M.B., Siwicki,M., Wireman,J., and Pohlod,D. 1990. Reduction in Legionella pneumophila through heat flushing followed by continuous supplemental chlorination of hospital hot water. J. Infect. Dis. 162:127-132.
Sopena,N., Sabria,M., Pedro-Botet,M.L., Manterola,J.M., Matas,L., and Dominguez,J. 1999. Prospective study of community-acquired pneumonia of bacterial etiology in adults. Eur J Clin Microbiol Infect Dis 18:852-858.
Spector,M.P., d Portillo,F.G., Bearson,S.M., Mahmud,A., Magut,M., Finlay,B.B., Dougan,G., and Foster,J.W. 1999. The rpoS-dependent starvation-stress response locus stiA encodes a nitrate reductase (narZYWV) required for carbon-starvation-inducible thermotolerance and acid tolerance in Salmonell typhimurium. Microbiology 145:3035-3045.
States,S.J., Conley,L.F., Kuchta,J.M., Oleck,B.M., Lipovich,M.J., Wolford,R.S., Wadowsky,R.M., McNamara,A.M., Sykora,J.L., Keleti,G., and Yee,R.B. 1987. Survival and multipliction of Legionella pneumophila in municipal drinking water system. Appl. Environ. Microbiol. 53:979-986.
Steinert,M., Emody,L., Amann,R., and Hacker,J. 1997. Resuscitation of viable but nonculturable Legionella pneumophila philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microbiol. 63:2047-2053.
Steinert,M., Ockert,G., Luck,C., and Hacker,J. 1998. Regrowth of Legionella pneumophila in a heat-disinfected plumbing system. Zent. bl. Bakteriol 288:331-342.
Stewart,P.S., Griebe,T., Srinivasan,R., Chen,C.I., Yu,F.P., deBeer,D., and McFeters,G.A. 1994. Comparison of respiratory activity and culturability during monochloramine disinfection of binary population biofilms. Appl. Environ. Microbiol. 60:1690-1692.
Storey,M.V., Winiecka-Krusnell,J., Ashbolt,N.J., and Stenstrom,T.A. 2004. The efficacy of heat and chlorine treatment against thermotolerant acnthamoebae and Legionellae. Scand. J. Infect. Dis 36:656-662.
Stout,J.E., Best,M.G., and Yu,V.L. 1986. Susceptibility of members of the family Legionellaceae to thermal stress: implications for heat eradication methods in water distribution systems. Appl. Environ. Microbiol. 52:396-399.
Teixeira,P., Castro,H., Mohacsi-Farkas,C., and Kirby,R. 1997. Identification of sites of injury in Lactobacillus bulgaricus during heat stress. J. Appl. Microbiol. 83:219-226.
TW CDC 2004. Legionellosis.
VanBogelen,R.A. and Neidhardt,F.C. 1990. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. 87:5589-5593.
Vatsos,I.N., Thompson,K.D., and Adams,A. 2003. Starvation of Flavobacterium psychrophilum in broth, stream water and distilled water. Dis Aquat. Org. 56:115-126.
Vicker,R.M., Yu,V.L., Hanna,S.S., uraca,P., and Diven,W. 1987. Determinants of Legionella pneumophila contamination of water distribution systems: 15-hospital prospective study. Infect. Control 8:357-363.
Walsh,S.M. and Bissonnette,G.K. 1983. Chlorine-induced damage to surface adhesins during sublethal injury of enterotoxigenic Escherichia coli. Appl. Environ. Microbiol. 45:1060-1065.
Wintermeyer,E., Ludwig,B., Steinert,M., Schmidt,B., Fischer,G., and Hacker,J. 1995. Influence of site specifically altered Mip protein on intracellular survival of Legionella pneumophila in eucariotic cells. Infect. Immun. 63:4576-4583.
Woo,A.H., Goetz,A., and Yu,V.L. 1992. Transmission of Legionella by respiratory equipment and aersol generating devices. Chest 1992:-1586.
Yamamoto,H., Hashimoto,Y., and Ezaki,T. 1996. Study of nonculturable Legionella pneumophila cells during multiple-nutrient starvation. FEMS Microbiol. Ecology 20:149-154.
Yu,F.P. and McFeters,G.A. 1994. Physiological responses of bacteria in biofilms to disinfection. Appl. Environ. Microbiol. 60:2462-2466.
Zacheus,O.M. and Martikainen,P.J. 1996. Effect of heat flushing on the concentrations of Legionella pneumophila and other heterotrophic microbes in hot water systems of apartment buildings. Can. J. Microbiol. 42:811-818.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36402-
dc.description.abstractLegionella. pneumophila在自然界中分佈甚廣,建築體中也容易大量孳生,尤其辦公大樓、工業場所冷卻水塔與醫療院所冷熱水系統,都是L. pneumophila的可能滋生源,因此以控制水中L. pneumophila的生長,降低感染可能性,是防止退伍軍人症感染的主要方法
本研究建立加熱及加氯殺菌系統,並進行殺菌效能評估。結果顯示,L. pneumophila在60℃與0.5 mg/L 自由餘氯劑量下皆快速失去可培養力。低劑量(0.5 mg/L) 自由餘氯可使細胞膜完整之細菌減低至5 %以下,且總蛋白質大量減少。然而高溫殺菌後仍有5-40 %細菌保持細胞膜完整且總蛋白質量不受影響。當溫度又回復至37℃後,細胞膜完整之細菌比率亦有上升的可能,加氯殺菌後則無此現象。針對蛋白質表現分析,加熱殺菌後與壓力抵抗相關之蛋白質的表現量上升,尤其侵犯宿主之相關蛋白質在長時間加熱後表現量上升,代表細菌在高溫加熱後仍然存活,且欲以感染宿主作為環境壓力抵抗之可能機制。
上述結果顯示加氯殺菌對L. pneumophila控制效果優於加熱殺菌。根據目前的研究結果,建議在控制非飲用水時採用加氯法,而對熱水供應系統以加熱法為控制時,另需定期以不同指標監控環境中L. pneumophila分佈情形,以達到防治退伍軍人症的目的。
zh_TW
dc.description.abstractLegionella pneumophila is widely spread in both natural and man-made environment. The cooling tower of office buildings and the drinking water of hospitals are both likely to habit L. pneumophila. In order to protect the workers from L. pneumophila infection, it is necessary to eliminate or inhibit the growth of L. pneumophila in aquatic environment.
In this study, we evaluated the effectiveness of heat and chlorine disinfection. The culturability of L. pneumophila was lost rapidly under the disinfection condition of 60℃ and 0.5 mg/L free chlorine. The membrane integrant cell percentages were reduced down to 5 % when treated with 0.5 mg/L free chlorine and protein mass was reduced substantially. However, 5~40% cells remained membrane integrant after heat disinfection at 60℃ and 70℃ for 30 min while protein mass was not affected. As incubation temperature back to 37℃, there is a possibility for percentage of membrane integrant cells to increase after heat disinfection. In contrast, no similar observations were found in chlorine-disinfected L. pneumophila. As for protein profile of the heat-disinfected L. pneumophila, host-invasion related proteins were particularly up-regulated in 24 hr heating, implying the survival and infectious potential for the long-term heat disinfected L. pneumophila.
Based on the above results, chlorination is better than heating terms of the disinfection efficiency on L. pneumophila. To control L. pneumophila in environments, it is suggested to apply chlorination as the disinfection strategy for the non-potable water system. The route surveillance with non-culture assay methods (e.g., Polymerase Chain reaction) should be performed for L. pneumophila examination in the hot water supply system when the heat treatment is served as the control method.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:59:35Z (GMT). No. of bitstreams: 1
ntu-94-R92841006-1.pdf: 2821738 bytes, checksum: 5663f738fa2d09da0e784abbc052e3e6 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents摘 要 I
ABSTRACT II
CONTENTS III
LIST OF TABLES V
LIST OF FIGURES VI
LIST OF TABLES IN APPENDIX VII
LIST OF FIGURES IN APPENDIX VIII
A. INTRODUCTION 1
1. L. PNEUMOPHILA AND LEGIONNAIRES’ DISEASE 1
1.1. L. PNEUMOPHILA 1
1.2. LEGIONNAIRES’ DISEASE 1
2. CONTROL OF L. PNEUMOPHILA 2
2.1. OFFICIAL SUGGESTIONS 2
2.2. HEAT 3
2.3. CHLORINATION 4
3. STARVATION 5
4. EVALUATION METHODS OF DISINFECTION EFFICIENCY 5
4.1. CULTURABILITY 5
4.2. MEMBRANE INTEGRITY 6
4.3. PROTEIN MASS 6
4.4. PROTEIN PROFILE 6
B. PURPOSE 11
C. STUDY DESIGN 12
D. MATERIAL AND METHOD 15
1. BACTERIAL STRAIN AND STARVED CONDITION 15
2. HEAT TREATMENT ON STARVED L. PNEUMOPHILA 15
3. CHLORINE TREATMENT ON STARVED L. PNEUMOPHILA 16
4. CULTURABILITY OF L. PNEUMOPHILA 17
5. MEMBRANE INTEGRITY OF L. PNEUMOPHILA 17
6. DATA ANALYSIS FOR MEMBRANE INTEGRITY 19
6.1. PARAMETERS DERIVED 19
6.2. STATISTICAL ANALYSIS 20
7. PROTEOME ANALYSIS 20
7.1. Sample preparation and protein quantification 20
7.2. 2-DE 22
7.3. Image analysis 23
7.4. In-gel digestion 24
7.5. Peptide mass fingerprinting 24
7.6. Data analysis 25
E. RESULT 26
1. HEAT TREATMENT ON L. PNEUMOPHILA 26
1.1. Effect of starvation on L. pneumophila 26
1.2. The culturability of heat treated L. pneumophila 27
1.3. Total cell concentration and membrane integrity of heat treated L. pneumophila 27
1.4. The influence of 7-day incubation on L. pneumophila after heat treatment 29
2. CHLORINE TREATMENT ON L. PNEUMOPHILA 39
2.1. Chlorine concentration 39
2.2. Starvation effect on L. pneumophila at concentration of 106 – 107 cell/mL 40
2.3. Culturability of starved L. pneumophila after chlorine treatment 41
2.4. Membrane integrity of starved L. pneumophila with chlorination 41
3. PROTEOME 50
3.1. Protein concentration and mass 50
3.2. Protein expression of heat-treated L. pneumophila 50
3.3. Protein profiles of 62 qualified spots 52
F. DISCUSSION 67
1. STARVATION 67
2. HEAT DISINFECTION ON STARVED L. PNEUMOPHILA 69
2.1. Efficacy of heat disinfection on culturability of L. pneumophila 69
2.2. Heat injury on starved L. pneumophila with respect to membrane integrity 70
2.3. 7-day post-incubation after heating 73
2.4. Indicators of efficacy of heat disinfection on starved L. pneumophila 73
3. CHLORINE DISINFECTION ON STARVED L. PNEUMOPHILA 75
3.1. Efficacy of chlorine disinfection on culturability of L. pneumophila 75
3.2. Membrane injury caused by chlorine on starved L. pneumophila 76
3.3. Indicators of efficacy of chlorine disinfection on starved L. pneumophila 78
4. COMPARISON BETWEEN HEAT DISINFECTION AND CHLORINE DISINFECTION ON STARVED L. PNEUMOPHILA 79
5. PROTEIN PROFILE OF HEAT DISINFECTION L. PNEUMOPHILA 80
5.1. Metabolism related protein 80
5.2. Replication & Translation related protein 82
5.3. ATP synthesis related protein 82
5.4. Stress resistance protein 83
6. OFFICIAL SUGGESTIONS IN COMPARISONS WITH OUR RESULT 88
G. CONCLUSION 90
H. FUTURE WORK 93
I. APPENDIX 94
1. WATER BATH STABILITY MONITOR 94
2. WATER TEMPERATURE MEASUREMENT DURING HEAT TREATMENT 95
3. HACH POCKET METER VALIDITY 96
4. DETERMINATION OF INITIAL CONCENTRATION OF L. PNEUMOPHILA FOR CHLORINE TREATMENT 98
5. VALIDITY OF BACLIGHT STAIN 100
6. VOLUME OF BACLIGHT STAIN FOR CHLORINE-TREATED SAMPLES 102
7. DETERMINATION OF MINIMAL NUMBER OF COUNTING FIELDS BY FLUORESCENCE MICROSCOPY WITH BACLIGHT STAIN 103
8. LUCIA COUNTING ADJUSTMENT FOR FREE CHLORINE TREATMENT 105
9. PROTEOMIC PARAMETER SELECTION 108
J. REFERENCE LIST 114
dc.language.isoen
dc.subject加氯殺菌zh_TW
dc.subject嗜肺性退伍軍人菌zh_TW
dc.subject加熱殺菌zh_TW
dc.subjectchlorine disinfectionen
dc.subjectL. pneumophilaen
dc.subjectheat disinfectionen
dc.title嗜肺性退伍軍人菌加熱與加氯殺菌效能評估zh_TW
dc.titleEvaluation of heat and chlorine disinfection efficiency on Legionella pneumophilaen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee潘子明,張上淳
dc.subject.keyword嗜肺性退伍軍人菌,加熱殺菌,加氯殺菌,zh_TW
dc.subject.keywordL. pneumophila,heat disinfection,chlorine disinfection,en
dc.relation.page121
dc.rights.note有償授權
dc.date.accepted2005-07-22
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved