請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36398完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏銘(Homer H. Chen) | |
| dc.contributor.author | Yu-Chun Peng | en |
| dc.contributor.author | 彭昱鈞 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:59:27Z | - |
| dc.date.available | 2005-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-22 | |
| dc.identifier.citation | [1]. Oshima, M., Hayashi, T., Fujioka, S., Inaji, T., Mitani, H., Kajino, J., Ikeda, K., and Komoda, K., “VHS camcorder with electronic image stabilizer,” IEEE Trans. on Consumer Electronics, Vol. 35, No. 4, pp. 749-758, Nov. 1989.
[2]. Sato, K., Ishizuka, S., Nikami, A., and Sato, M., “Control techniques for optical image stabilizing system,” IEEE Trans. on Consumer Electronics, Vol. 39, No. 3, pp. 461-466, Aug. 1993. [3]. Hansen, M., Anandan, P., Dana, K., van der Wal, G., and Burt, P., “Real-time scene stabilization and mosaic construction,” Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 54-62, Dec. 1994. [4]. Irani, M., Rousso, B., and Peleg, S., “Recovery of ego-motion using image stabilization,” Proceedings CVPR '94. on Computer Vision and Pattern Recognition, pp. 454-460, June. 1994. [5]. W. Li and E. Salari, “Successive elimination algorithm for motion estimation,” IEEE Trans. on Image Processing, Vol. 4, No. 1,pp. 105-107, Jan. 1995. [6]. S. Eckart and C. Fogg, ISO/IEC MPEG-2 Software Video Codec, SPIE Digital Video Compression: Algorithms and Technologies, 1995. [7]. W. M. Chao, C.W. Hsu, Y.C. Chang, and L. G. Chen, “ A novel hybrid motion estimator supporting diamond search and fast full search,” in IEEE International Symposium on Circuits and Systems, 2002. [8]. T. Koga, K. Linuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion compensated interframe coding for video conferencing,” in Proc. NTC, pp. C9.6.1-9.6.5, Nov. 1981. [9]. S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block matching motion estimation,” Information, Communications and Signal Processing, pp. 9-12, Sept. 1997. [10]. C. Zhu, X. Lin, and L. P. Chau, “Hexagon-based search pattern for fast block matching motion estimation,” IEEE Trans. on Circuits and Systems for Video Technology, pp. 349-355, May. 2002. [11]. S. S. Lin, P. C. Tseng, C. P. Lin, and L. G. Chen, “Multi-mode content-aware motion estimation algorithm for power-aware video coding systems,” IEEE Workshop on Signal Processing Systems, pp. 239-244, 2004. [12]. K. Uomori, A. Morimura, H. Ishii, T. Sakaguchi, and Y. Kitamura, “Automatic image stabilizing system by full-digital signal processing,” IEEE Trans. on Consumer Electronics, vol. 36, no. 3, pp. 510-519, Aug. 1990. [13]. J.-K. Paik, Y.-C. Park, and S.-W. Park, “An edge detection approach to digital image stabilization based on tri-state adaptive linear neurons,” IEEE Trans. on Consumer Electronics, vol. 37, no. 3, pp. 521-530, Aug. 1991. [14]. J.-K. Paik, Y.-C. Park, and D.-W. Kim, “An adaptive motion decision system for digital image stabilizer based on edge pattern matching,” IEEE Trans. on Consumer Electronics, vol. 38, no. 3, pp. 607-616, Aug. 1992. [15]. Y. Egusa, H. Akahori, A.Morimura, and N. Wakami, “An application of fuzzy set theory for an electronic video camera image stabilizer,” IEEE Trans. on Fuzzy Systems, vol. 3, Issue 3, pp. 351-356, Aug. 1995. [16]. S.-J. Ko, S.-H. Lee, and K.-H. Lee, “Digital image stabilizing algorithms based on bit-plane matching,” IEEE Trans. on Consumer Electronics, vol. 44, Issue 3, Aug. 1998. [17]. S.-J. Ko, S.-H. Lee, and S.-W. Jeon, “Fast digital image stabilizer based on Gray-coded bit-plane matching,” ICCE. International Conference on Consumer Electroics., pp. 90-91, 22-24 June 1999. [18]. G.-R. Chen, Y.-M. Yeh, S.-J. Wang, and H.-C. Chiang, “A novel structure for digital image stabilizer,” The 2000 IEEE Asia-Pacific Conference on Circuits and Systems, Dec. 2000. [19]. S. Erturk, “Image sequence stabilization by low-pass filtering of interframe motion,” Proc. SPIE, Visual Communication and image Processing, vol. 4310, pp. 434-442, 2001. [20]. S. Erturk, and T. J. Dennis, “Image sequence stabilization based on DFT filtering”, IEE proc. on Image Vision and Signal Processing, vol. 127, pp. 95-102, 2000. [21]. S. Erturk, and M. K. Gullu, “Membership function adaptive fuzzy filter for image sequence stabilization,” IEEE Trans. on Consumer Electronics, vol. 50, issue 1, pp. 1-7, Feb. 2004. [22]. S. Ertruk, “Real-time digital image stabilization using Kalman filters,” Real-Time Imaging, vol. 8, pp.317-328, 2002. [23]. A. Engelsberg, and G. Schmidt, “A comparative review of digital image stabilising algorithms for mobile video communications,” IEEE Trans. on Consumer Electronics, vol. 45, Issue 3, pp. 591-597, Aug. 1999. [24]. A. Censi, A. Fusiello, and V. Roberto, “Image stabilization by feature tracking,” International Conference on Image Analysis and Processing Proceedings, 1999, pp. 665-667, Sept. 1999. [25]. R. Coadray and B. Besserer, “Global motion estimation for MPEG-encoded streams,” International Conference on Image Processing, pp. 3411-3414, Oct. 2004. [26]. Gyro-sensor: Angular Velocity Sensor from Murata, http://www.murata.com/. [27]. ADSP-BF561 Blackfin Processor Hardware Reference Preliminary Reversion 0.2, Analog Devices Inc., Nov. 2003. [28]. Generic Coding of Audio-Visual Objects – Part 2 Visual, ISO/IEC 14496-2, 2001. [29]. Draft ITU-T Recommendation H.264 and Final Draft International Standard of Joint Video Specification 14 496-10 Advanced Video Coding, May 2003. [30]. M. Oshima, T. Hayashi, S. Fujioka, and T. Inaji, “VHS camcorder with electronic image stabilizer, “IEEE Trans. on Consumer Electronics, vol. 36, no. 3, pp. 510-519, Aug. 1990. [31]. C. Morimoto, and R. Chellappa, “Fast electronic digital image stabilization for off-road navigation,” Real-Time Imaging, vol. 2, pp. 285-296, 1996. [32]. F. Vella, A. Castorina, M. Mancuso, and G. Meesina, “Digital image stabilization by adaptive block motion vectors filtering,” IEEE Trans. on Consumer Electronics, vol. 48, Issue 3, Aug. 2002. [33]. W. Wang, Y. Tsai, C. Luo, G. Chen, “Fusion of video encoding and image stabilization,” Proc. Conf. Electronic Imaging and Multimedia Technology IV, SPIE vol. 5637, Nov. 2004. [34]. J.-Y. Chang, W.-F. Hu, M.-H. Cheng, and B.-S. Chang, “Digital image translational and rotational motion stabilization using optical flow technique,” IEEE Trans. on Consumer Electron., vol. 48, no.1, pp. 108-115, Feb. 2002. [35]. C.-K. Liang, Y.-C. Peng, H.-A. Chang, and Homer H. Chen, “The effect of digital image stabilization on coding performance,” Proc. Int’l Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 402-405, 2004. [36]. Y.-C. Peng, H.-A Chang, Homer H. Chen, and C.-J Kao, “Digital Image Stabilization and Its Integration with Video Encoder,” Proc. IEEE Consumer Communications and Networking Conference, 2005. [37]. Y.-C. Peng, H.-A Chang, Homer H. Chen, and C.-J Kao, “Integration of image stabilizer with video codec for digital video cameras,” Proc. IEEE International Symposium on Circuits and System, 2005. [38]. Y.-C. Peng, M.-T Lu, and Homer H. Chen, “DSP implementation of digital image stabilizer,” Proc. IEEE International Conference on Multimedia and Expo, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36398 | - |
| dc.description.abstract | 近幾年來,由於科技的發展,許多的數位商品紛紛問世,並已經融入了我們生活之中。由於電子式的影像擷取裝置被廣泛的應用在各個層面,因此數位影像的處理技術愈趨重要,譬如影像壓縮技術,影像穩定系統等等。其中影像穩定系統,能夠提供給使用者有更清晰、更高品質的畫面享受。
數位式影像穩定系統的架構大致上可以分為兩部分:總體移動估計以及總體移動補償。總體移動估計主要是當攝影機震動時,去量測影像框架之間的總體移動;而總體移動補償則是根據計算出的總體移動,在感光元件上取出穩定而且連續的影像。由於總體移動估計需要耗費大量的計算,然而,在影像編碼器或是解碼器裡面皆含有相關的資訊,例如以區塊作為基礎的移動量估計等,如果可以利用這些資訊跟影像穩定系統去做整合,便可以使得計算更有效率。 本論文研究的重點,將針對數位式影像穩定系統進行研究,希望以影像穩定系統的演算法作為基礎,與視訊編碼技術MPEG-4做一即時運算的結合。在此論文中,我們提出三種整合的架構,皆是利用MPEG-4編碼器或是解碼器所得到的運動資訊,去計算出影像系統中總體移動估計的部分,以避免重複去做移動估計的運算,並對整合所得的結果去做各個層面的分析與比較。 | zh_TW |
| dc.description.abstract | The movement of a video camera caused by hand jiggle introduces jerky image motion that is often annoying to human eyes. The problem can be solved by using an image stabilization system to compensate for the hand motion. As opposed to optical image stabilization which uses gyro-sensors to detect hand motion and shifts a corrective lens inside the lens system (or alternatively shifts the image sensor while keeping the lens fixed) , digital image stabilization detects the induced image motion based on the video data and shifts the image display window accordingly to compensate for the hand motion. For many digital video camera designs, digital image stabilization is a cost effective solution and is the subject of discussion in this thesis.
A digital image stabilization system that can reduce inter-frame hand-shaking movement and smooth the intentional camera movement in a video sequence is proposed. The video sequence is processed to estimate the local motion vectors by block-based motion estimation and to obtain the global motion vector by clustering. The global motion vector between frames is real-time low-pass filtered to remove high frequency motion component caused by hand-shaking. A simplified stabilization algorithm facilitates the implementation on BF561, a DSP processor of Analog Device. For a digital video camera, digital image stabilization system and video coder are two important components, which both require motion information of the captured image sequence to perform their respective tasks. Since motion estimation is a computationally intensive operation, we propose three schemes for integrating the electronic image stabilization system with the video coder. The technical issues involved in the integration are discussed, and the simulation results are shown to illustrate the effectiveness of the integration schemes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:59:27Z (GMT). No. of bitstreams: 1 ntu-94-R92942046-1.pdf: 1698723 bytes, checksum: a24b450be818e38762853c196d11268c (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Abstract
1 Introduction 1 1.1 Image Stabilization System Overview 1 1.2 Thesis Organization 4 2 Related Work of Image Stabilization 5 2.1 Previous Algorithms of Motion Estimation 5 2.2 Previous Algorithms of Image Stabilization 11 3 Digital Image Stabilization System 19 3.1 System Overview and Architecture 19 3.2 Block-based Motion Estimation 21 3.3 Global Motion Decision24 3.4 Global Motion Smoothing 25 3.5 Global Motion Compensation 27 3.6 Image Stabilization for Camera Zooming 28 3.7 Image Stabilization for Camera Rapid Panning 31 3.8 Experiment Results 32 4 DSP Implementation of Digital Image Stabilization System 38 4.1 Simplified Image Stabilization Algorithm 38 4.2 DSP Architecture 41 4.3 Performance 45 5 Impact of Digital Image Stabilization on Coding Performance 47 5.1 Motivation 47 5.2 Impact on Coding Performance 48 5.3 Summary 52 6 System Integration with Video Coder for Digital Video Camera 54 6.1 Introduction to System Integration 54 6.2 Integration with Video Coder 56 6.2.1 Scheme 1 57 6.2.2 Scheme 2 60 6.2.3 Scheme 3 63 6.3 Summary 65 7 Conclusion 66 References | |
| dc.language.iso | zh-TW | |
| dc.subject | 數位式防手振 | zh_TW |
| dc.subject | digital image stabilization | en |
| dc.title | 數位攝影機之數位式影像穩定系統及視訊編碼器之整合 | zh_TW |
| dc.title | Digital Image Stabilization and Its Integration with Video Codec for Digital Video Cameras | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王聖智,貝蘇章,吳家麟,傅楸善 | |
| dc.subject.keyword | 數位式防手振, | zh_TW |
| dc.subject.keyword | digital image stabilization, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
