Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36388
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陶秘華(Mi-Hua Tao)
dc.contributor.authorLi-Yi Chenen
dc.contributor.author陳俐儀zh_TW
dc.date.accessioned2021-06-13T07:59:07Z-
dc.date.available2010-08-02
dc.date.copyright2005-08-02
dc.date.issued2005
dc.date.submitted2005-07-22
dc.identifier.citation1. Lee, W. M. 1997. Hepatitis B virus infection. N Engl J Med 337:1733.
2. Seeger, C., and W. S. Mason. 2000. Hepatitis B virus biology. Microbiol Mol Biol Rev 64:51.
3. Peters, M., J. Vierling, M. E. Gershwin, D. Milich, F. V. Chisari, and J. H. Hoofnagle. 1991. Immunology and the liver. Hepatology 13:977.
4. Beasley, R. P., L. Y. Hwang, C. C. Lin, and C. S. Chien. 1981. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 2:1129.
5. Ganem, D., and A. M. Prince. 2004. Hepatitis B virus infection--natural history and clinical consequences. N Engl J Med 350:1118.
6. Guidotti, L. G., B. Matzke, H. Schaller, and F. V. Chisari. 1995. High-level hepatitis B virus replication in transgenic mice. J Virol 69:6158.
7. Pollack, J. R., and D. Ganem. 1994. Site-specific RNA binding by a hepatitis B virus reverse transcriptase initiates two distinct reactions: RNA packaging and DNA synthesis. J Virol 68:5579.
8. Guidotti, L. G., K. Ando, M. V. Hobbs, T. Ishikawa, L. Runkel, R. D. Schreiber, and F. V. Chisari. 1994. Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc Natl Acad Sci U S A 91:3764.
9. Maini, M. K., C. Boni, G. S. Ogg, A. S. King, S. Reignat, C. K. Lee, J. R. Larrubia, G. J. Webster, A. J. McMichael, C. Ferrari, R. Williams, D. Vergani, and A. Bertoletti. 1999. Direct ex vivo analysis of hepatitis B virus-specific CD8(+) T cells associated with the control of infection. Gastroenterology 117:1386.
10. Bertoletti, A., A. Costanzo, F. V. Chisari, M. Levrero, M. Artini, A. Sette, A. Penna, T. Giuberti, F. Fiaccadori, and C. Ferrari. 1994. Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J Exp Med 180:933.
11. Heathcote, J. 2003. Treatment of HBe antigen-positive chronic hepatitis B. Semin Liver Dis 23:69.
12. Hoofnagle, J. H., and A. M. di Bisceglie. 1997. The treatment of chronic viral hepatitis. N Engl J Med 336:347.
13. Rehermann, B. 2003. Immune responses in hepatitis B virus infection. Semin Liver Dis 23:21.
14. Chisari, F. V. 2000. Rous-Whipple Award Lecture. Viruses, immunity, and cancer: lessons from hepatitis B. Am J Pathol 156:1117.
15. Guidotti, L. G., T. Ishikawa, M. V. Hobbs, B. Matzke, R. Schreiber, and F. V. Chisari. 1996. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4:25.
16. Maini, M. K., C. Boni, C. K. Lee, J. R. Larrubia, S. Reignat, G. S. Ogg, A. S. King, J. Herberg, R. Gilson, A. Alisa, R. Williams, D. Vergani, N. V. Naoumov, C. Ferrari, and A. Bertoletti. 2000. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med 191:1269.
17. Webster, G. J., S. Reignat, D. Brown, G. S. Ogg, L. Jones, S. L. Seneviratne, R. Williams, G. Dusheiko, and A. Bertoletti. 2004. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J Virol 78:5707.
18. Shimada, N., K. Yamamoto, M. J. Kuroda, R. Terada, T. Hakoda, H. Shimomura, H. Hata, E. Nakayama, and Y. Shiratori. 2003. HBcAg-specific CD8 T cells play an important role in virus suppression, and acute flare-up is associated with the expansion of activated memory T cells. J Clin Immunol 23:223.
19. Lau, G. K., D. Suri, R. Liang, E. I. Rigopoulou, M. G. Thomas, I. Mullerova, A. Nanji, S. T. Yuen, R. Williams, and N. V. Naoumov. 2002. Resolution of chronic hepatitis B and anti-HBs seroconversion in humans by adoptive transfer of immunity to hepatitis B core antigen. Gastroenterology 122:614.
20. Waldmann, T. A. 2003. Immunotherapy: past, present and future. Nat Med 9:269.
21. Zemon, H. 2003. An artificial solution for adoptive immunotherapy. Trends Biotechnol 21:418.
22. Krueger, C., J. P. Schneck, and M. Oelke. 2004. Quality and quantity: new strategies to improve immunotherapy of cancer. Trends Mol Med 10:205.
23. Walter, E. A., P. D. Greenberg, M. J. Gilbert, R. J. Finch, K. S. Watanabe, E. D. Thomas, and S. R. Riddell. 1995. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038.
24. Riddell, S. R., B. A. Walter, M. J. Gilbert, and P. D. Greenberg. 1994. Selective reconstitution of CD8+ cytotoxic T lymphocyte responses in immunodeficient bone marrow transplant recipients by the adoptive transfer of T cell clones. Bone Marrow Transplant 14 Suppl 4:S78.
25. Heslop, H. E., M. K. Brenner, and C. M. Rooney. 1994. Donor T cells to treat EBV-associated lymphoma. N Engl J Med 331:679.
26. Brodie, S. J., B. K. Patterson, D. A. Lewinsohn, K. Diem, D. Spach, P. D. Greenberg, S. R. Riddell, and L. Corey. 2000. HIV-specific cytotoxic T lymphocytes traffic to lymph nodes and localize at sites of HIV replication and cell death. J Clin Invest 105:1407.
27. Meidenbauer, N., J. Marienhagen, M. Laumer, S. Vogl, J. Heymann, R. Andreesen, and A. Mackensen. 2003. Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J Immunol 170:2161.
28. Yee, C., J. A. Thompson, D. Byrd, S. R. Riddell, P. Roche, E. Celis, and P. D. Greenberg. 2002. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A 99:16168.
29. Dudley, M. E., J. R. Wunderlich, P. F. Robbins, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. Sherry, N. P. Restifo, A. M. Hubicki, M. R. Robinson, M. Raffeld, P. Duray, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, S. A. Mavroukakis, D. E. White, and S. A. Rosenberg. 2002. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850.
30. Xu, X. N., and G. R. Screaton. 2002. MHC/peptide tetramer-based studies of T cell function. J Immunol Methods 268:21.
31. Palena, C., M. Zhu, J. Schlom, and K. Y. Tsang. 2004. Human B cells that hyperexpress a triad of costimulatory molecules via avipox-vector infection: an alternative source of efficient antigen-presenting cells. Blood 104:192.
32. Oelke, M., M. V. Maus, D. Didiano, C. H. June, A. Mackensen, and J. P. Schneck. 2003. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med 9:619.
33. Kim, J. V., J. B. Latouche, I. Riviere, and M. Sadelain. 2004. The ABCs of artificial antigen presentation. Nat Biotechnol 22:403.
34. Janetzki, S., P. Song, V. Gupta, J. J. Lewis, and A. N. Houghton. 2000. Insect cells as HLA-restricted antigen-presenting cells for the IFN-gamma elispot assay. J Immunol Methods 234:1.
35. Papanicolaou, G. A., J. B. Latouche, C. Tan, J. Dupont, J. Stiles, E. G. Pamer, and M. Sadelain. 2003. Rapid expansion of cytomegalovirus-specific cytotoxic T lymphocytes by artificial antigen-presenting cells expressing a single HLA allele. Blood 102:2498.
36. Latouche, J. B., and M. Sadelain. 2000. Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nat Biotechnol 18:405.
37. Maus, M. V., A. K. Thomas, D. G. Leonard, D. Allman, K. Addya, K. Schlienger, J. L. Riley, and C. H. June. 2002. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol 20:143.
38. Greten, T. F., F. Korangy, G. Neumann, H. Wedemeyer, K. Schlote, A. Heller, S. Scheffer, D. M. Pardoll, A. I. Garbe, J. P. Schneck, and M. P. Manns. 2002. Peptide-beta2-microglobulin-MHC fusion molecules bind antigen-specific T cells and can be used for multivalent MHC-Ig complexes. J Immunol Methods 271:125.
39. Yu, Y. Y., N. Netuschil, L. Lybarger, J. M. Connolly, and T. H. Hansen. 2002. Cutting edge: single-chain trimers of MHC class I molecules form stable structures that potently stimulate antigen-specific T cells and B cells. J Immunol 168:3145.
40. Schirmbeck, R., D. Stober, S. El-Kholy, P. Riedl, and J. Reimann. 2002. The immunodominant, Ld-restricted T cell response to hepatitis B surface antigen (HBsAg) efficiently suppresses T cell priming to multiple Dd-, Kd-, and Kb-restricted HBsAg epitopes. J Immunol 168:6253.
41. Shuford, W. W., K. Klussman, D. D. Tritchler, D. T. Loo, J. Chalupny, A. W. Siadak, T. J. Brown, J. Emswiler, H. Raecho, C. P. Larsen, T. C. Pearson, J. A. Ledbetter, A. Aruffo, and R. S. Mittler. 1997. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 186:47.
42. Sytwu, H. K., W. D. Lin, S. R. Roffler, J. T. Hung, H. S. Sung, C. H. Wang, T. L. Cheng, S. C. Tsou, S. C. Hsi, and K. L. Shen. 2003. Anti-4-1BB-based immunotherapy for autoimmune diabetes: lessons from a transgenic non-obese diabetic (NOD) model. J Autoimmun 21:247.
43. Lee, H. W., S. J. Park, B. K. Choi, H. H. Kim, K. O. Nam, and B. S. Kwon. 2002. 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol 169:4882.
44. Bertram, E. M., W. Dawicki, B. Sedgmen, J. L. Bramson, D. H. Lynch, and T. H. Watts. 2004. A switch in costimulation from CD28 to 4-1BB during primary versus secondary CD8 T cell response to influenza in vivo. J Immunol 172:981.
45. Halstead, E. S., Y. M. Mueller, J. D. Altman, and P. D. Katsikis. 2002. In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses. Nat Immunol 3:536.
46. Tan, J. T., J. K. Whitmire, K. Murali-Krishna, R. Ahmed, J. D. Altman, R. S. Mittler, A. Sette, T. C. Pearson, and C. P. Larsen. 2000. 4-1BB costimulation is required for protective anti-viral immunity after peptide vaccination. J Immunol 164:2320.
47. Melero, I., W. W. Shuford, S. A. Newby, A. Aruffo, J. A. Ledbetter, K. E. Hellstrom, R. S. Mittler, and L. Chen. 1997. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 3:682.
48. Wen, T., J. Bukczynski, and T. H. Watts. 2002. 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol 168:4897.
49. Ye, Z., I. Hellstrom, M. Hayden-Ledbetter, A. Dahlin, J. A. Ledbetter, and K. E. Hellstrom. 2002. Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB. Nat Med 8:343.
50. Hellstrom, K. E., and I. Hellstrom. 2003. Therapeutic vaccination with tumor cells that engage CD137. J Mol Med 81:71.
51. Hudson, P. J., and C. Souriau. 2003. Engineered antibodies. Nat Med 9:129.
52. Grabstein, K. H., J. Eisenman, K. Shanebeck, C. Rauch, S. Srinivasan, V. Fung, C. Beers, J. Richardson, M. A. Schoenborn, M. Ahdieh, and et al. 1994. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264:965.
53. Waldmann, T. A., S. Dubois, and Y. Tagaya. 2001. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14:105.
54. Vamosi, G., A. Bodnar, G. Vereb, A. Jenei, C. K. Goldman, J. Langowski, K. Toth, L. Matyus, J. Szollosi, T. A. Waldmann, and S. Damjanovich. 2004. IL-2 and IL-15 receptor alpha-subunits are coexpressed in a supramolecular receptor cluster in lipid rafts of T cells. Proc Natl Acad Sci U S A 101:11082.
55. Elkord, E., P. E. Williams, H. Kynaston, and A. W. Rowbottom. 2005. Human monocyte isolation methods influence cytokine production from in vitro generated dendritic cells. Immunology 114:204.
56. Pickl, W. F., O. Majdic, P. Kohl, J. Stockl, E. Riedl, C. Scheinecker, C. Bello-Fernandez, and W. Knapp. 1996. Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes. J Immunol 157:3850.
57. Jonuleit, H., U. Kuhn, G. Muller, K. Steinbrink, L. Paragnik, E. Schmitt, J. Knop, and A. H. Enk. 1997. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135.
58. Kalinski, P., J. H. Schuitemaker, C. M. Hilkens, and M. L. Kapsenberg. 1998. Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol 161:2804.
59. Michel, M. L., H. L. Davis, M. Schleef, M. Mancini, P. Tiollais, and R. G. Whalen. 1995. DNA-mediated immunization to the hepatitis B surface antigen in mice: aspects of the humoral response mimic hepatitis B viral infection in humans. Proc Natl Acad Sci U S A 92:5307.
60. Davis, H. L., M. L. Michel, and R. G. Whalen. 1993. DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Hum Mol Genet 2:1847.
61. Chow, Y. H., W. L. Huang, W. K. Chi, Y. D. Chu, and M. H. Tao. 1997. Improvement of hepatitis B virus DNA vaccines by plasmids coexpressing hepatitis B surface antigen and interleukin-2. J Virol 71:169.
62. Jackson, R. J., M. T. Howell, and A. Kaminski. 1990. The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem Sci 15:477.
63. Jang, S. K., H. G. Krausslich, M. J. Nicklin, G. M. Duke, A. C. Palmenberg, and E. Wimmer. 1988. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636.
64. Jang, S. K., and E. Wimmer. 1990. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev 4:1560.
65. Wen, X. Y., S. Mandelbaum, Z. H. Li, M. Hitt, F. L. Graham, T. S. Hawley, R. G. Hawley, and A. K. Stewart. 2001. Tricistronic viral vectors co-expressing interleukin-12 (1L-12) and CD80 (B7-1) for the immunotherapy of cancer: preclinical studies in myeloma. Cancer Gene Ther 8:361.
66. Kaminski, A., M. T. Howell, and R. J. Jackson. 1990. Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. Embo J 9:3753.
67. Rees, S., J. Coote, J. Stables, S. Goodson, S. Harris, and M. G. Lee. 1996. Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. Biotechniques 20:102.
68. Zhang, X., S. Sun, I. Hwang, D. F. Tough, and J. Sprent. 1998. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8:591.
69. Waldmann, T. A., and Y. Tagaya. 1999. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 17:19.
70. Bamford, R. N., A. P. DeFilippis, N. Azimi, G. Kurys, and T. A. Waldmann. 1998. The 5' untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control. J Immunol 160:4418.
71. Lin, J. X., T. S. Migone, M. Tsang, M. Friedmann, J. A. Weatherbee, L. Zhou, A. Yamauchi, E. T. Bloom, J. Mietz, S. John, and et al. 1995. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2:331.
72. Ishikawa, T., D. Kono, J. Chung, P. Fowler, A. Theofilopoulos, S. Kakumu, and F. V. Chisari. 1998. Polyclonality and multispecificity of the CTL response to a single viral epitope. J Immunol 161:5842.
73. Li, S., K. M. Paulsson, S. Chen, H. O. Sjogren, and P. Wang. 2000. Tapasin is required for efficient peptide binding to transporter associated with antigen processing. J Biol Chem 275:1581.
74. Evans, G. A., D. H. Margulies, B. Shykind, J. G. Seidman, and K. Ozato. 1982. Exon shuffling: mapping polymorphic determinants on hybrid mouse transplantation antigens. Nature 300:755.
75. Lems, S. P., C. W. Jacobs, P. J. Capel, and R. A. Koene. 1987. Effects of monoclonal anti-H-2Ld and anti-H-2Dd alloantibodies in the immunological enhancement of skin grafts and neonatal heart grafts in the mouse. J Immunol 138:2082.
76. Schirmbeck, R., K. Melber, A. Kuhrober, Z. A. Janowicz, and J. Reimann. 1994. Immunization with soluble hepatitis B virus surface protein elicits murine H-2 class I-restricted CD8+ cytotoxic T lymphocyte responses in vivo. J Immunol 152:1110.
77. Matsui, M., O. Moriya, N. Abdel-Aziz, Y. Matsuura, T. Miyamura, and T. Akatsuka. 2002. Induction of hepatitis C virus-specific cytotoxic T lymphocytes in mice by immunization with dendritic cells transduced with replication-defective recombinant adenovirus. Vaccine 21:211.
78. Li, H., M. Zhou, J. Han, X. Zhu, T. Dong, G. F. Gao, and P. Tien. 2005. Generation of murine CTL by a hepatitis B virus-specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments. J Immunol 174:195.
79. Whalen, R. G., and H. L. Davis. 1995. DNA-mediated immunization and the energetic immune response to hepatitis B surface antigen. Clin Immunol Immunopathol 75:1.
80. Zhou, L. J., and T. F. Tedder. 1996. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci U S A 93:2588.
81. Haskill, S., C. Johnson, D. Eierman, S. Becker, and K. Warren. 1988. Adherence induces selective mRNA expression of monocyte mediators and proto-oncogenes. J Immunol 140:1690.
82. Sallusto, F., and A. Lanzavecchia. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109.
83. Lee, A. W., T. Truong, K. Bickham, J. F. Fonteneau, M. Larsson, I. Da Silva, S. Somersan, E. K. Thomas, and N. Bhardwaj. 2002. A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine 20 Suppl 4:A8.
84. Hogquist, K. A., S. C. Jameson, W. R. Heath, J. L. Howard, M. J. Bevan, and F. R. Carbone. 1994. T cell receptor antagonist peptides induce positive selection. Cell 76:17.
85. Smith, J. D., W. R. Lie, J. Gorka, C. S. Kindle, N. B. Myers, and T. H. Hansen. 1992. Disparate interaction of peptide ligand with nascent versus mature class I major histocompatibility complex molecules: comparisons of peptide binding to alternative forms of Ld in cell lysates and the cell surface. J Exp Med 175:191.
86. Porgador, A., J. W. Yewdell, Y. Deng, J. R. Bennink, and R. N. Germain. 1997. Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6:715.
87. Falk, K., and O. Rotzschke. 1993. Consensus motifs and peptide ligands of MHC class I molecules. Semin Immunol 5:81.
88. Corr, M., L. F. Boyd, S. R. Frankel, S. Kozlowski, E. A. Padlan, and D. H. Margulies. 1992. Endogenous peptides of a soluble major histocompatibility complex class I molecule, H-2Lds: sequence motif, quantitative binding, and molecular modeling of the complex. J Exp Med 176:1681.
89. Udaka, K., K. H. Wiesmuller, S. Kienle, G. Jung, and P. Walden. 1996. Self-MHC-restricted peptides recognized by an alloreactive T lymphocyte clone. J Immunol 157:670.
90. Ribaudo, R. K., and D. H. Margulies. 1995. Polymorphism at position nine of the MHC class I heavy chain affects the stability of association with beta 2-microglobulin and presentation of a viral peptide. J Immunol 155:3481.
91. Beck, J. C., T. H. Hansen, S. E. Cullen, and D. R. Lee. 1986. Slower processing, weaker beta 2-M association, and lower surface expression of H-2Ld are influenced by its amino terminus. J Immunol 137:916.
92. Potter, T. A., T. H. Hansen, R. Habbersett, K. Ozato, and A. Ahmed. 1981. Flow microfluorometric analysis of H-2L expression. J Immunol 127:580.
93. Tagaya, Y., G. Kurys, T. A. Thies, J. M. Losi, N. Azimi, J. A. Hanover, R. N. Bamford, and T. A. Waldmann. 1997. Generation of secretable and nonsecretable interleukin 15 isoforms through alternate usage of signal peptides. Proc Natl Acad Sci U S A 94:14444.
94. Bamford, R. N., A. P. Battiata, J. D. Burton, H. Sharma, and T. A. Waldmann. 1996. Interleukin (IL) 15/IL-T production by the adult T-cell leukemia cell line HuT-102 is associated with a human T-cell lymphotrophic virus type I region /IL-15 fusion message that lacks many upstream AUGs that normally attenuates IL-15 mRNA translation. Proc Natl Acad Sci U S A 93:2897.
95. Zhou, L. J., R. Schwarting, H. M. Smith, and T. F. Tedder. 1992. A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J Immunol 149:735.
96. Yamashiro, S., J. M. Wang, D. Yang, W. H. Gong, H. Kamohara, and T. Yoshimura. 2000. Expression of CCR6 and CD83 by cytokine-activated human neutrophils. Blood 96:3958.
97. Klein, E., S. Koch, B. Borm, J. Neumann, V. Herzog, N. Koch, and T. Bieber. 2005. CD83 localization in a recycling compartment of immature human monocyte-derived dendritic cells. Int Immunol 17:477.
98. Cao, W., S. H. Lee, and J. Lu. 2005. CD83 is preformed inside monocytes, macrophages and dendritic cells, but it is only stably expressed on activated dendritic cells. Biochem J 385:85.
99. Olerup, O., and H. Zetterquist. 1992. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39:225.
100. Krausa, P., and M. J. Browning. 1996. A comprehensive PCR-SSP typing system for identification of HLA-A locus alleles. Tissue Antigens 47:237.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36388-
dc.description.abstract台灣成年人中有高達20%的人口為B型肝炎帶原者,這些慢性B型肝炎患者為肝硬化及肝癌的高危險群,且每年造成全球死亡人次超過一百萬人。因此,發展有效的慢性B型肝炎療法,仍然是相當重要。許多研究證據支持,慢性B型肝炎患者體內若是具有活化狀態的B型肝炎病毒特異性T細胞,便能抑制B型肝炎病毒複製。因此,利用細胞繼代免疫療法將大量活化的B型肝炎病毒特異性T細胞重新輸回慢性B型肝炎患者體內,預期將能治療慢性B型肝炎。現今進行細胞繼代免疫療法時,多採用棘狀細胞外加月生肽來刺激T細胞增生,但是製造棘狀細胞昂貴且複雜。因此,我們以人造抗原呈獻細胞(aAPC)作為一種新的抗原呈獻細胞來源,來增生細胞繼代免疫療法時所需的T細胞。
有效的T細胞活化需要接受不同的刺激。透過月生肽-主要組織相容性複合物(peptide:MHC)與T細胞受器相連結,APC傳遞第一個訊息給遭遇抗原的T細胞。相同的APC同時也傳遞第二道訊息,即共刺激訊息給T細胞。
在此研究中,我們試著發展aAPC的系統來增生HBV特異性毒殺T細胞。設計以纖維母細胞為基礎的aAPC,在其上表現單鏈HBs28-39-β2微球蛋白-H2Ld(訊息一),膜結合態的單鏈抗小鼠4-1BB變異片段(訊息二)以及T細胞生長因子,介白素-2或介白素-15。透過流式細胞儀偵測aAPC細胞表面HBs-H2Ld和anti-4-1BB的表現量。我們也證明這些aAPCs能夠分泌具有功能的介白素-2或是介白素-15。在一次的實驗中,我們以人造抗原呈獻細胞刺激出少量(約3%)的小鼠HBs特異性CD8 T細胞。然而,以細胞毒殺試驗評估HBs-H2Ld的生物功能時,表現HBs-H2Ld的細胞卻無法被HBs特異性T細胞毒殺。因此,我們需以更多的實驗來驗證aAPC是否具有功能。

本文第二部分為分離人類周邊血液單核細胞並確定經冷凍保存的單核細胞仍然保有增生能力。此外,我們以人類單核球分化成具有成熟棘狀細胞型態及表現型的CD83+棘狀細胞。
zh_TW
dc.description.abstractUp to 20% of adults in Taiwan are chronic carriers of hepatitis B. These chronic carriers have a high risk of developing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Worldwide deaths from HBV-associated liver cancer exceed one million per year. Thus, development of an effective treatment for chronic hepatitis B (CHB) patients is of medical importance. Many studies suggest that viral replication in chronic hepatitis B patients could be inhibited by activated HBV-specific cytotoxic T cells. Therefore, adoptive transfer activated HBV specific CTLs into CHB patients represents a promising method to treat CHB. For adoptive immunotherapy, one commonly used approach for induction and expansion of antigen-specific CTLs has been based on the use of antigen-loaded dendritic cells as antigen presenting cells. However, generation and maintenance of DCs is costly and cumbersome. An alternative source of APC, artificial antigen-presenting cell (aAPC), is therefore designed to stimulate the expansion and acquisition of optimal therapeutic features of T cells.
Efficient T-cell activation requires stimulation of a combination of signals. Antigen encountered T cells receive the first signal through engagement of the T-cell receptor with peptide:MHC (major histocompatibility complex) complexes on APCs. At the same time, a second signal, the co-stimulatory signal, is delivered by the same APC.
In this study, we aimed to develop aAPC systems to expand HBV-specific CTLs. The fibroblast-based aAPCs were engineered to express a single chain HBs28-39-β2 microglobulin-H2Ld complex (signal 1), a membrane anchored anti-4-1BB single- chain Fv fragments (scFv) (signal 2) as well as T-cell growth and stimulating factor, IL-2 or IL-15. Expression of HBs-H2Ld and anti-4-1BB scFv protein was detected by FACS analysis of aAPCs. We also demonstrated that these aAPCs release a significant amount of biologically active IL-2 and IL-15. In one experiment, we found that these aAPCs could induce a small percentage (~ 3%) HBs-specific CTLs in vitro as detected by MHC pentamer staining. However, in other experiments HBs-β2m- H2Ld-expressing target cells were not sensitized for lysis by HBs-specific CTLs in a 51Cr-release assay. Further experiments are required to resolve this discrepancy.
In the second part of the study, we isolated human peripheral mononuclear cells, and proved that their proliferative activity was preserved after cryopreservation. We also set up techniques to culture plastic-adherent blood monocytes and stimulated their differentiation into CD83+ cells with immunophenotypic and morphologic characteristic of mature dendritic cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:59:07Z (GMT). No. of bitstreams: 1
ntu-94-R92424011-1.pdf: 1804148 bytes, checksum: 717df148895f981b55c0767b5173e7a5 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄 I
中文摘要 V
Abstract VI
圖次 VIII
縮寫表 X
第一章、序論 1
壹、B型肝炎病毒簡介 (Hepatitis B virus,HBV) 1
貳、B型肝炎病毒的致病機轉 2
參、細胞繼代免疫療法Cellular Adoptive immunotherapy 4
肆、人造抗原呈獻細胞 (Artificial APC,aAPC) 6
伍、單鏈主要組織相容性複合體(scMHC)--- 訊息一 8
陸、單鏈抗小鼠4-1BB變異片段 (anti-4-1BB scFv) --- 訊息二 8
柒、細胞激素 --- 訊息三 10
捌、製造人類棘狀細胞 10
玖、實驗目的 10
第二章、材料與方法 12
第一節、質體的構築 12
壹、質體的製備 (Nucleobond AX,Macherey-Nagel,Cat. No. 740545) 12
貳、聚合酶連鎖反應 (Polymerase Chain Reaction,PCR) 12
參、1 % 洋菜膠電泳 (1% agarose gel electrophoresis) 13
肆、DNA 片段分離 (QIAquick Gel Extraction kit,QIAGEN,Cat. No. 28704) 13
伍、Zero Blunt TOPO PCR Cloning (Invitrogen,Cat. No. K2800-20) …………………………………………………………….14
陸、限制酵素切割反應 (Restriction enzyme digestion) 14
柒、DNA接合反應 (T4 DNA ligase,Invitrogen , Cat No. 15224-017). 14
捌、細菌電擊轉殖法(Electro transformation) 14
第二節、細胞株與細胞培養 15
第三節、重組反轉錄病毒的構築 (Recombinant retrovirus construction) 15
壹、反轉錄病毒載體與包裝細胞的構築 (Clontech,Cat. No. 6102-1). 15
貳、反轉錄病毒包裝細胞 (PT67 packaging cell line)的轉染 (Clontech,Cat. No. K1060-D) 16
參、標的細胞 (Target cell) 的感染與篩選 17
第四節、蛋白質在真核細胞中的表現 17
壹、真核細胞的轉染 (Transfection) 17
貳、西方墨漬法(western blot) 18
參、酵素連結免疫分析法 (Enzyme Linked ImmunoSorbent Assay,ELISA) 19
肆、細胞表面分子的免疫螢光染色分析 20
伍、以HT-2細胞測定細胞激素之生物活性 21
陸、毒殺性T淋巴球試驗 (Cytotoxic T lymphocyte assay) 21
第五節、動物實驗 23
壹、實驗動物來源 23
貳、使用的疫苗 23
參、小鼠的免疫注射方式 24
肆、小鼠的活體內電擊 24
伍、脾臟細胞的置備 24
陸、淋巴結細胞的置備 25
柒、培養小鼠棘狀細胞 25
第三章、實驗結果 27
第一部、 誘發及增生抗原特異性CD8 T 細胞 27
第一節、 人造抗原呈獻細胞的置備及其功能的分析 27
壹、構築同時表現單鏈抗小鼠4-1BB變異片段及細胞激素(介白素-2或介白素-15)的反轉錄病毒載體 27
貳、重組反轉錄病毒感染3T3纖維母細胞 31
參、挑選重組反轉錄病毒感染後合適的單一細胞克隆 32
肆、構築單鏈HBs-β2微球蛋白(β2-microglobulin,β2m)- H2Ld及單鏈β2 m– H2Ld的反轉錄病毒載體 35
伍、重組反轉錄病毒感染3T3及表現H2Ld的單一細胞 37
陸、分析篩選後之永久表現的人造抗原呈獻細胞 39
柒、以細胞毒殺反應進行單鏈HBs-β2m-H2Ld功能測試 40
第二節、 以小鼠棘狀細胞及人造抗原呈獻細胞誘發及增生HBs 抗原特異性CD8 T細胞 40
壹、培養小鼠棘狀細胞,分析表面immunophenotype 41
貳、DNA疫苗引發HBV S蛋白的細胞性及體液性免疫反應 41
參、不同免疫次數對細胞毒殺反應的影響 42
肆、體外刺激HBs抗原特異性CD8 T細胞 42
第二部、培養人類周邊血液單核細胞及棘狀細胞 44
第一節、製備人類周邊血液單核細胞群 45
第二節、 測量淋巴細胞活性---分裂素(Mitogen)誘發周邊血液單核細胞增生 45
第三節、 由單核球(monocyte)製造人類棘狀細胞 46
第四節、以細胞激素誘使單核球分化 47
壹、 棘狀細胞型態變化 47
貳、 未成熟與成熟棘狀細胞表面表現型(phenotype)的差異…… 47
參、 異體 mix lymphocyte reaction(allo-MLR)分析成熟棘狀細胞刺激T細胞能力 48
第四章、討論 49
檢視單鏈HBs-H2Ld不具有功能的原因 50
檢視介白素-2和介白素-15產量的差異 52
成熟棘狀細胞標記---CD83分子的特性 54
第五章、參考文獻 56
圖片 66
表一、人造抗原呈獻細胞列表及基因片段結構圖 106
附錄一 107
附錄二 108
附錄三 115
附錄四 117
dc.language.isozh-TW
dc.subject毒殺性T細胞zh_TW
dc.subjectB型肝炎zh_TW
dc.subject人造抗原呈獻細胞zh_TW
dc.subject棘狀細胞zh_TW
dc.subjectdendritic cellen
dc.subjectartificial antigen presenting cellen
dc.subjectCD8 T cellen
dc.subjecthepatitis B virusen
dc.title構築B型肝炎病毒之人造抗原呈獻細胞zh_TW
dc.titleConstruction of Artificial Antigen Presenting Cell for Hepatitis B Virus Researchen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡忠怡(Chung-Yi Hu),張淑媛(Su-Yuan Chang),陳健弘(Chien-Hung Chen)
dc.subject.keyword人造抗原呈獻細胞,B型肝炎,毒殺性T細胞,棘狀細胞,zh_TW
dc.subject.keywordartificial antigen presenting cell,hepatitis B virus,CD8 T cell,dendritic cell,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2005-07-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫事技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved