Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36371
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江簡富(Jean-Fu Kiang)
dc.contributor.authorMin-Hsi Chuangen
dc.contributor.author莊閔旭zh_TW
dc.date.accessioned2021-06-13T07:58:33Z-
dc.date.available2010-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-22
dc.identifier.citation[1] T. Sehm and A. Lehto, “A high-Gain 58-GHz box-horn array antenna with suppressed grating lobes,” IEEE Trans. Antennas Propagat., vol. 47, no. 7, pp. 1125-1230, July 1999.
[2] R. P. Flam and S. J. Foti, “Diagonal horn antenna for amplitude comparison DF systems,” IEEE AP-S Int. Symp., pp. 352-355, June 1979.
[3] V. Douvalis and Y. Hao, “A monolithic active conical horn antenna arrays for millimeter and sub-millimeter wave applications,” IEEE AP-S Int. Symp., pp. 567-570, June 2004.
[4] A. Stelzer and C. G. Diskus, “A microwave position sensor with submillimeter accuracy,”IEEE Trans. Microwave Theory Tech., vol. 42, pp.685-694, May 1998.
[5] J. D. Ronald, “Antennas for All Applications,” McGraw-Hill, 2002.
[6] J. M. Jaren, “A multifilament method-of-moments solution for the input impedance of a probe-excited semi-infinite waveguide,” IEEE Trans. Microwave Theory Tech., vol. 35, no. 1, pp.14-18, Jan. 1987.
[7] I. Fabregas and K. Shamasifer, “Coaxial to rectangular waveguide transitions,” IEEE AP-S Int. Symp., vol.4, pp.2122-2125, July 1992.
[8] R. B. Keam and A. G. Williamaon, “Analysis and design of coaxial-line/rectangular waveguide junction with a dielectrically sheathed centre probe,” IEEE Asia-Pacific Microwave conf., vol. 2, pp. 845-848, Aug. 1992.
[9] M. E. Bialkowski, “Analysis of a coaxial-to-waveguide adaptor including a discended probe and a tuning post,” IEEE Microwave Guided Wave Lett., vol. 1, pp. 211-214,
Aug. 1991.
[10] S.L. Romano and B. P. Naranjo, “Ka-band waveguide-to-microstrip transition design and implementation,” IEEE AP-S Int. Symp., vol. 3, pp. 404, June 2002.
[11] D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microwave Wireless Comp. Lett. vol. 11, no. 2, pp. 1425-1432, Feb. 2001.
[12] T. Q. Ho and Y. C. Shin, “ Spectral-domain analysis of E-plane waveguide to microstrip transition,” IEEE Trans. Microwave Theory Tech. vol. 37, no. 2, Feb. 1989.
[13] F. J. Villegas and I. Stones, “A novel waveguide-to-microstrip transition for millimeterwave module applications,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 1, Jan. 1999.
[14] F. Villegas and D. Stones, “A novel waveguide-to-microstrip transition for low-cost millimeter-wave and MMIC applications,” IEEE MTT-S. Int. Microwave Symp. Dig., vol. 2, pp. 739-742, 1997.
[15] C. J. Lee and H. S. Wu, “A broadband microstrip-to-waveguide transition using planar technique,” Asia-Pacific Microwave Conf., pp. 543-546, 2001.
[16] W. Grabherr, B. Huder, and W. Menzel, “Microstrip to waveguide transition compatible with mm-wave integrated circuits,”IEEE Trans. Microwave Theory Tech. vol. 42, no. 9, pp. 1842.1843, Mar. 1994.
[17] C. Reig and E. A. Navarro, “Full-wave FDTD design and analysis of wideband
microstrip-to-waveguide transition,” Microwave Opt. Tech. Lett., vol. 38, no. 4, pp.
317-320, Aug. 2003.
[18] J. P. Becker, Y. Lee, J. R. East, and L. P. B. Katehi,“A finite ground coplanar lineto-silicon micromachined waveguide transition,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 10, pp. 1671-1676, Mar. 2001.
[19] Poly-grames Research Center, “Integrated transition of coplanar to rectangular
waveguides, ” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 619-622, May 2001.
[20] S. Hirsch and K. Duwe, “A transition from rectangular waveguide to coplanar waveguide on membrane, ” Infrared Millimeter Waves, Conf. Dig., pp. 299-300, Sep 2000.
[21] IMST, “A novel Coplanar transmission line to rectangular waveguide transition,” 1998.
[22] G. E. Ponchak and R. N. Simons, “A new rectangular waveguide to coplanar waveguide transition, ” IEEE MTT-S Int. Microwave Symp. Dig.,pp. 491-492, 1990.
[23] N. Dib and A. Omar, “FTDT analysis of a new transtion from coplanar waveguide to rectangular waveguide,” IEEE Trans. Microwave Theory Tech., vol. 29, no. 3, pp.199-201, May 2001.
[24] B. N. Das and K. V. S. R. Prasad, “Excitation of waveguide by stripline- and microstripline-fed slots,” IEEE Trans. Microwave Theory Tech., vol. 23, MTT-34, no. 3, pp. 321-327, Mar. 1986.
[25] B. Glance and R. Trambarulo, “A waveguide to suspend stripline transition,” IEEE Trans. Microwave Theory Tech., vol. 21, no. 2, pp. 117-118, Feb. 1973.
[26] G. E. Ponchak and R. N. Simons, “ A new rectangular waveguide to coplanar waveguide transition,”IEEE MTT-S Int. Microwave Symp. Dig., pp. 491-492, May 1990.
[27] M. G. Keller and D. Roscoe, “Active millimerter-wave aperture-coupled microstrip patch antenna array,” Electron. Lett. vol. 31, no. 1, pp. 2-4, Jan. 1995.
[28] M. G. Keller and D. Roscoe, “Active aperture-coupled rectangular dielectric resonator antenna,” IEEE Microwave Guided Wave Lett. vol. 5, no. 11, Nov. 1995.
[29] U. S. patent, 5317329.
[30] U. S. patent, 4571593.
[31] R. K. Mongia and A. Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas.” IEEE Trans. Antennas Propagat., vol. 45, no. 9, pp. 1348-1356, Sep. 1997.
[32] S.C. Cripps, RF Power Amplifiers for Wireless Communications, Artech House, 1999.
[33] M. H. Neshati and Z. Wu, “Theoretical and experiment investigation of the input impedance of probe-fed rectangular resonator Antenna,” Int. Conf. Microwave Millimeter Wave Tech. Pro., pp. 448-451, Aug. 2002.
[34] S. Mridula and S. K. Menon, “Excited high-permittivity rectangular dielectric resonator antenna,” Microwave Opt. Tech. Lett., vol. 40, no. 4, pp. 316-318, Feb. 2004.
[35] S. M. Deng and C. L. Tsai, “CPW-fed dual rectangular ceramic dielectric resonator antennas with indctively coupled solts, ”Microwave Opt. Tech. Lett. vol. 45, no. 6, pp. 559-560, June 2005.
[36] Y. Antar and Z. Fan, “Theoretical investigation of aperture-coupled rectangular dielectric resonator,”IEE Proc. Microwave Antennas Propagat. vol. 143, no. 2, pp. 113-118, Apr. 1996.
[37] S. M. Shum and K. M. Luk,“Analysis of aperture coupled rectangular dielectric resonator antenna, ”Electron. Lett., vol. 30, no. 6, pp. 1726-1727, Oct. 1994.
[38] A. Petosa and A. Ittipiboon, “Recent advantages in dielectric resonator antenna technology,” IEEE Antannas Mag., vol. 40, pp. 35-48, June 1998.
[39] Y. D. Kim and M. S. Kim, “Internal rectangular dielectric resonator antenna with broadband characteristics for IMT-2000 handset,”IEEE AP-S Int. Symp. Dig., pp. 22-25, July 2002.
[40] D. Cormas and A. Laisne, “Compact dielectric resonator antenna for WLAN applications,” Electron. Lett., vol. 39, no. 7, pp. 588-590, Apr. 2003.
[41] S. Muridula and S. K. Menon, “Characteristics of a microstrip-excited high-permittivity rectangular dielectric resonator antenna,”Microwave Opt. Tech. Lett., vol. 40, no. 4, pp. 316-318, Feb. 2004.
[42] R.K. Mongia and A. Ittipiboon, “Radiation Q-factor of rectangular dielectric resonator antennas: Theory and experiment,” IEEE AP-S Int. Symp. Dig., pp. 764-766, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36371-
dc.description.abstract本論文藉由整合號角狀天線(horn antenna)、介電共振器(dielectric resonator)與功率放大器(power amplifier),成為一可攜式的高指向性天線。在帶狀線與波導的轉接中,藉由介電共振器而增加信號耦合的效率。當此轉接方式用於號角天線時,相對於傳統轉接方式,介電共振器的使用可以提供項對寬的頻寬並改善天線的幅射場型。
藉由天線與功率放大器的結合,可得到更高之天線增益。最後,將兩個號角天線組合於一基板上,經分析與設計後與可得到和(sum)與差模(difference)的天線幅射場型。本架構可以用在衛星通訊、短距離傳輸、微波測試系統及訊號偵測器等;也可做成模組化,以增加系統的擴充性。
zh_TW
dc.description.abstractIn this thesis, a high directivity active horn antenna is designed and analyzed, and which is implemented by integrating the horn antenna, dielectric resonator and power amplifier. Using DRs in the stripline-to-waveguide transition, signals can couple to stripline or waveguide efficiently. An 8 \% impedance bandwidth and better radiation patterns in the $E$-plane radiation is observed. By integrating power amplifiers into the horn antenna, antenna gain is increased by 7.1 dB without increasing the circuit volume. Chokes are used to reduce the backward radiation. Finally, dual horn antennas are designed and implemented. Sum and difference patterns are also observed as expected. The invention can be applied in many fields such as satellite communication, short term communication, microwave detection system, and signal detector, etc. They can be moduled for extensive application.en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:58:33Z (GMT). No. of bitstreams: 1
ntu-94-R92942011-1.pdf: 710831 bytes, checksum: 93ca5180bf9f6eb5bf0634877ea48456 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAbstract
Table of Contents ii
List of Figures vii
1 Introduction 1
2 Active H-plane Horn Antennas . . . . . . . . . . . . . . . . . . . .16
2.1 Waveguide-Fed Horn Antennas . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Dielectric Resonator . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 19
2.3 Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 22
2.4 Class-A Power Amplifier Design . . . . . . . . . . . . . . . . . . . . . 29
3 DR-Enhanced Waveguide-Fed H-plane Horn Antenna 35
3.1 Antenna Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Simulations and Measurements . . . . . . . . . . . . . . . . . . . . . . 37
3.3 DR-Enhanced Horn Antenna with Power Amplifier . . . . . . . 40
3.4 Reduction of Back-Radiation . . . . . . . . . . . . . . . . . . . . . 41
4 Dual Horn Antennas 47
4.1 Sum and Difference Patterns . . . . . . . . . . . . . . . . . .. . . . 47
4.2 Antenna Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
dc.language.isoen
dc.subject主動天線zh_TW
dc.subject介質共振器zh_TW
dc.subject號角天線zh_TW
dc.subjectactive antennaen
dc.subjecthorn antennaen
dc.subjectdielectric resonatoren
dc.title主動式介質共振器饋訊之號角天線zh_TW
dc.titleDielectric-Resonator- Fed Active Horn Antennaen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林怡成
dc.subject.keyword介質共振器,號角天線,主動天線,zh_TW
dc.subject.keyworddielectric resonator,horn antenna,active antenna,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2005-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
694.17 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved