Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36328
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor貝蘇章-
dc.contributor.authorDun-Yu Hsiaoen
dc.contributor.author蕭敦育zh_TW
dc.date.accessioned2021-06-13T07:57:11Z-
dc.date.available2008-07-26-
dc.date.copyright2005-07-26-
dc.date.issued2005-
dc.date.submitted2005-07-24-
dc.identifier.citation[1]. Marichal, X.; Ma W. Y.; Zhang H. J.; “Blur determination in the compressed domain using DCT information” in Proceedings of International Conference on Image Processing, vol. 2, pp. 386 - 390, 1999
[2]. Elder, J. H.; Zucker, S.W.; “Local scale control for edge detection and blur estimation” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, No. 7, pp. 699 – 716, 1998
[3]. Elder, J. H.; Zucker, S.W.; “Scale space localization, blur, and contour-based image coding“ in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 27 – 34, 1996
[4]. Popescu, A.C.; Farid, H.; “Exposing digital forgeries by detecting traces of re-sampling” in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 53, No. 2, pp. 758 – 767, 2005
[5]. Lyu, S.; Farid, H.; “How realistic is photorealistic?” in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 53, No. 2, pp. 845 – 850, 2005
[6]. Popescu, A.C.; Farid, H.; “Statistical Tools for Digital Forensics”, Department of Computer Science at Dartmouth College
[7]. Lyu, S.; Farid, H.; “Higher-order Wavelet Statistics and their Application to Digital Forensics” in IEEE Workshop on Statistical Analysis in Computer Vision, 2003
[8]. Farid, H.; “Detecting Digital Forgeries Using Bispectral Analysis”, Perceptual Science Group, MIT, Cambridge, MA 02139
[9]. Popescu, A.C.; Farid, H.; “Exposing Digital Forgeries by Detecting Duplicated Image Regions”, Department of Computer Science, Dartmouth College
[10]. Popescu, A.C.; Farid, H.; “Exposing Digital Forgeries in Color Filter Array Interpolated Images” , Department of Computer Science, Dartmouth College
[11]. Ng, T. T.; Chang, S. F.; “A model for image splicing” in IEEE International Conference on Image Processing, vol. 2, pp. 1169 – 1172, 2004
[12]. Ng, T. T.; Chang, S. F.; Sun, Q.; “Blind detection of photomontage using higher order statistics” in IEEE Proceedings of International Symposium on Circuits and Systems, vol.5, pp. 688 – 691, 2004
[13]. Ng, T. T.; Chang, S. F.; “A Data Set of Authentic and Spliced Image Blocks“ in ADVENT Technical Report, No. 203-2004-3, Columbia University, Electrical Engineering Department, Columbia University, New York, 2004
[14]. Ng, T. T.; Chang, S. F.; “Blind Detection of Digital Photomontage using Higher Order Statistics “ in ADVENT Technical Report, No. 203-2004-3, Columbia University, Electrical Engineering Department, Columbia University, New York, 2004
[15]. Fridrich, J.; Soukal, D.; Lukáš, J.; “Detection of Copy-Move Forgery in Digital Images”, Department of Electrical and Computer Engineering, Department of Computer Science
[16]. Kerlow, I. V.; The Art of 3-D Computer Animation and Effects, 3rd ed., John Wiley, ISBN: 0471430366
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36328-
dc.description.abstract你可曾自己修改不滿意的數位照片?如果有,那你就算接觸過數位影像的編修了。隨著科技進步,電腦能提供的運算能力越來越強大,伴隨方便、容易上手卻又擁有強大功能的數位影像軟體,有經驗的使用者就能夠將數位多媒體資料轉變成為他們所想要的形式,而以影像方式呈現的媒體為其大宗。隨之而來且日益重要的是如何去偵測數位影像編修合成竄改的問題。
在大多數的時候,數位影像的修改是不容易被發現的,編修過的痕跡往往會被其作者盡力消去,避免其容易被分辨出來。然而,對影像的後製過程幾乎都會留下些蹤跡,雖然對人的肉眼而言難以察覺。基於這個想法,這篇論文中提出了幾個方式以及想法來應付並偵測數位影像的編修痕跡,但是並不藉由廣為人知的數位浮水印技巧。在各種偵測方式中,其有效性以及結果將會於相對應的章節中
做詳細的探討。
zh_TW
dc.description.abstractHave you ever edited some unsatisfied digital photographs of yours? If the answer is yes, then you have made some digital tampering. With powerful computer and mighty software, seasoned users could turn digital media into what they want. The detection of digital tampering has
become a crucial problem.
In most of the time, digital tampering is not perceptible by human; however, some traces of digital tampering may be left in the media during the process. Based on this idea, several detection methods are proposed in this thesis to against various common digital tampering without any help of embedded information such as the well-known atermarking technique.
Effectiveness and results will be presented in each method, robustness will also be discussed.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:57:11Z (GMT). No. of bitstreams: 1
ntu-94-R92942028-1.pdf: 7829488 bytes, checksum: e4c55410a00f07c5f7094421340e7a16 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsIntroduction to Digital Image Tampering Frauds 1
Section I: Topic Background
3
Chapter 1 All about Digital Image Tampering 3
1.1 Categories of image manipulation 3
1.2 Discussions about embedded framework 13
1.3 Earlier studies 14
Section II: Various detection schemes to specific manipulation
17
Chapter 2 Detection in Digital Editing Involving Re-sampling 19
2.1 The re-sampling procedure 20
2.2 Detecting re-sampling 25
2.3 Summary 29
Chapter 3 Exposing Blur in Digital Forensic
31
3.1 Blur estimation 33
3.1.1 Digital image tampering detection using blur estimation
—the frequency domain approach
46
3.1.2 Digital image tampering detection using blur estimation
—the spatial domain approach
47
3.2 Results of blur estimation 48
3.2.1 Results of blur estimation performed on ordinary blurred images 48





3.2.2 Digital image tampering detection results
from the frequency domain approach
53
3.2.3 Digital image tampering detection results
from the spatial domain approach
57
3.3 Error discussions 63
3.4 Other applications 64
3.5 Summary 64
Chapter 4 Analysis of Computer Assisted Graphics
65
4.1 The proposed system model of computer graphics and photography 68
4.2 The observation of inconsistency in computer-generated object 69
4.3 Global blur estimation on computer-generated images 76
4.4 Photorealistic images? Or artworks 79
Chapter 5 Conclusion
81
Appendix
87
The expectation maximization algorithm and Farid’s approach
for exposing digital forensics
87
Reference
95
Source Image
97
-
dc.language.isoen-
dc.title數位影像編修竄改及其偵測zh_TW
dc.titleDigital Image Tampering Synthesis and Identificationen
dc.typeThesis-
dc.date.schoolyear93-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鍾國亮,黃仲陵,陳永昌-
dc.subject.keyword數,位影像,編修,竄改,zh_TW
dc.subject.keyworddigital image,tampering,manipulation,fraud,forensic,forgery,doctoring,en
dc.relation.page98-
dc.rights.note有償授權-
dc.date.accepted2005-07-24-
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
7.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved