Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36236
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李達源(Dar-Yuan Lee)
dc.contributor.authorWei-Ging Suen
dc.contributor.author蘇偉俊zh_TW
dc.date.accessioned2021-06-13T07:54:33Z-
dc.date.available2005-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citation李達源、莊愷瑋。2001。地理統計於重金屬污染場址危害範圍界定之應用。地理統計在農業與環境科學之應用研討會論文集。第57-78頁。台北市。
郭鴻裕、劉滄棽、朱戩良、江志峰。2003。臺灣現行之農田土壤管理組之歸併與利用。土壤管理組規劃及應用研討會論文集。第1-20頁。台中市。
鍾仁賜、何聖賓、許正一。2003。臺灣新研擬土壤管理組織之施肥與作物產量關係。土壤管理組規劃及應用研討會論文集。第79-99頁。台中市。
Amini, M., M. Afyuni, N. Fathianpour, H. Khademi, and H. Flühler. 2005. Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma 124:223-233.
Armstrong, M., and R. Jabin. 1981. Variogram models must be positive-define. Math. Geol. 13:445-459.
Armosrong, M. 1998. Basic Linear Geostatistics. Springer-Verlag, Berlin, Germany.
Anderson-Cook, C.M., M.M. Alley, J.K.F. Roygard, R. Khosla, R.B. Noble, and J.A. Doolittle. 2002. Differentiating soil types using electromagnetic conductivity and crop yield maps. Soil Sci. Soc. Am. J. 66:1562-1570.
Bezdek, J.C., 1981. Pattern Recogniztion with Fuzzy Objective Function Algorithms. Plenum press, New York.
Bourennane, H., S. Salvador-Blanes, S. Cornu, D. King. 2003. Scale of spatial dependence between chemical properties of topsoil and subsoil over a geologically contrasted area (Massif central, France). Geoderma 112:235-251.
Burrough, P.A., P.F.M. Van Gaans, and R. Hootsmans. 1997. Continuous classification in soil survey: Spatial correlation, confusion, and boundaries. Geoderma 77:115-135.
Chang, J.Y., D.E. Clay, C.G. Carlson, S.A. Clay, D.D. Malo, R. Berg, J. Kleinjan, and W. Wiebold. 2003. Different techniques to identify management zones impact nitrogen and phosphorus sampling variability. Agron. J. 95:1550-1559.
Corwin, D.L., S.M. Lesch, P.J. Shouse, R. Soppe, and J.E. Ayars. 2003. Identifying soil properties that influence cotton yield using soil sampling directed by apparent soil electrical conductivity. Agron. J. 95:352-364.
Cressie, N.A.C 1991. Statistics for spatial data. John Wiley & Sons, New York.
De Bruin, S., and A. Stein. 1998. Soil-landscope modeling using fuzzy c-means clustering of attribute data derived from a digital elevation model (DEM). Geoderma 83:17-33.
De Gruijter, J.J., and A.B., McBratney. 1988. A modified fuzzy k-means method for predictive classification. In: Bock, H.H. (Ed.), Classification and Related Methods of Data Analysis. Elsevier, Amsterdam, pp. 97-104.
Ferguson, R.B., R.M. Lark, and G.P. Slater. 2003. Approaches to management zone definition for use of nitrification inhibitors. Soil Sci. Soc. Am. J. 67:937-947.
Fridgen, J.J., N.R. Kitchen, K.A. Sudduth, S.T. Drummond, W.J. Wiebold, and C.W. Fraisse. 2004. Management zone analyst (MZA): Software for subfield management zone delineation. Agron. J. 96:100-108.
Gamma Design. 2000. GS+ Geostatistics for the environmental sciences. Version 5. 1.1. Gamma Design Software, Plainwell, MI.
Gee, G.W., and J.W. Bauder. 1986. Partical-size analysis. p.383-411. In Method of soil analysis. Part 1. Physical and mineralogical methods. 2nd ed. ASA and SSSA, Madison, WI.
Hartsock, N.J., T.G. Mueller, G.W. Thomas, R.I. Barnhisel, and K.L. Wells. 2000. Soil electrical conductivity variability. In P.C. Robert et al., (ed.) Proceedings of the Fifth International Conference on Precision Agriculture and Other Resource Management. Bloomington, MN. 16-19 July 2000. ASA, CSSA, and SSSA, Madison, WI.
Hendrickx, J.M.H., B. Borchers, D.L. Corwin, S.M. Lesch, A.C. Hilgendorf, and J. Schlue. 2002. Inversion of soil conductivity profiles from electromagnetic induction measurements: Theory and experimental verification. Soil Sci. Soc. Am. J. 66:673-685.
Isaak, E.H., and R.M. Srivastava. 1989. An Introduction to Applied Geostatistics. Oxford Univ. Press, New York.
Jackson, M.L. 1962. P.240. In Soil Chemical Analysis. prentice-Hall, Inc., Englewood Cliffs, N.J.
Johnson, C.K., D.A. Mortensen, B.J. Wienhold, J.F. Shanahan, and J.W. Doran. 2003. Site-specific management zones based on soil electrical conductivity in a semiarid cropping system. Agron. J. 95:303-315.
Journel, A.G. and C.J. Huijbregts. 1978. Mining Geostatistics. Academic Press, New York.
Lark, R.M. 1999. Soil-landform relationships at within-field scales: An investigation using continuous classification. Geoderma 92:141-165.
Lark, R.M. 2001. Some tools for parsimonious modeling and interpretation of within-field variation of soil and crop systems. Soil Till. Res. 58:99-111.
Marschner, H. 1995. Mineral Nutrition of Higher Plants, 2nd ed., pp. 285-299. Academic Press, New York.
McBratney, A.B., and I.O.A. Odeh. 1997. Application of fuzzy sets in soil science: Fuzzy logic, fuzzy measurements, and fuzzy decisions. Geoderma 77:85-113.
McLean, E.O. 1982. Soil pH and lime requirement. p.199-224. In Page, A.L. (Ed.) Methods of soil analysis, Part II: Chemical and microbiological properties, 2nd Edition. ASA and SSSA, Madison, WI.
Minasny, B., and McBratney, A.B., 2002. FuzME version 3, Australian center for precision agriculture, The University of Sydney, NSW 2006.
Mulla, D.J., and A.U. Bhatti. 1997. An evaluation of indicator properties affecting spatial patterns in N and P requirements for winter wheat yield. p. 145-153. In J.V. Stafford (ed.) Precision agriculture 97, Proceedings of the first European conference on precision agriculture, Warwick University Conference Centre, UK, 7-10 Sept. 1997. Bios Scientific Publ., Ltd, Oxford, UK.
Peng, W., D.B. Wheeler, J.C. Bell, and M.G. Krusemark. 2003. Delineating patterns of soil drainage class on bare soils using remote sensing analyses. Geoderma 115:261-279.
Sudduth, K.A., S.T. Drummond, and N.R. Kitchen. 2001. Accuracy issue in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Comput. Electron. Agric. 31:239-264.
Schepers, A.R., J.F. Shanahan, M.A. Liebig, J.S. Schepers, S.H. Johnson, and A. Luchiari. 2004. Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agron. J. 96:195-203.
Webster, R. and M.A. Oliver. 2001. Geostatistics for environmental scientists. p. 6-8. John Wiley & Sons.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36236-
dc.description.abstract模糊集群分析 (fuzzy clustering analysis, FCA) 是目前最常被應用於界定土壤管理區 (management zone) 的方法,係將土壤性質的觀測資料轉成隸屬度函數 (membership function) 做為分類依據。依據已歸類分組之土壤在空間上的分布,界定不同管理區在空間位置上的邊界。實際上,當土壤的採樣密度無法涵蓋所有空間位置的土壤時,則無法精確的界定出不同管理區的邊界。由於克利金法是目前最常被用來分析處理土壤空間變異與推估空間分佈的技術,故已有文獻提出以模糊集群分析結合克利金法 (kriging) 來解決界定管理區邊界的問題,然而卻多未對其適用性做詳細的探討比較。本研究以台灣地區耕地土壤的管理區界定為例,探討模糊集群分析結合克利金的兩種方法 (一是將土壤性質經模糊集群分析後轉成的隸屬度值作克利金推估,另一是將土壤性質的克利金推估值代入模糊集群分類模式) 界定管理區的適用性。本研究區位於彰化縣埤頭鄉台糖元埔農場,為面積約20公頃的農地。本研究以表土之土壤酸鹼度值 (pH)、電導度 (EC) 與質地做為界定土壤管理區的性質,經多次模糊集群分析的分組模擬與克利金法的空間推估,藉以比較不同性質與不同分組模擬和空間推估步驟的影響。結果顯示,以質地所界定之管理區,其各區內之變異較未分組前小,而以pH和EC所界定之管理區其各區內之變異則無顯著減小。再者,從分組錯判率的評估結果發現,先以土壤性質建立模糊集群分類模式,再將研究區內各土壤性質的克利金推估值依分類模式歸類分組,其錯判區塊數較少;若將各土壤性質之先依分類模式轉換成不同組別的隸屬度值(也就是屬於不同組別的可能性),再以克利金推估未採樣點之土壤性質屬於各組別的隸屬度值,並依其大小來決定該未採樣點之土壤性質所屬之組別,則歸類分組的錯判區塊數會較多,故以前者所界定的管理區是較為可靠的。zh_TW
dc.description.abstractCurrently, fuzzy clustering analysis (FCA) is increasingly used to delineate zones for site-specific management. Sampled observations of soil properties can be classified into groups by using FCA given a membership function. The boundaries of management zones are thus determined on the spatial distribution of grouped soils. In practice, the sampling density will not be intensive enough to determine the management zone boundaries precisely. Thus, a scheme of fuzzy clustering analysis combined with kriging technique, which is frequently used in spatial interpolation of soil properties, has been proposed. However, there are few detailed discussions for assessing the feasibility of fuzzy clustering analysis combined with kriging to delineate management zones of agricultural soils in Taiwan. In this study, a comparison of two approaches of fuzzy clustering analysis combined with kriging, kriging membership values of fuzzy classification and putting kriged soil properties into fuzzy classification, was carried out. The study site was 20 ha in area in Changhua County, Taiwan. The observed data of pH, electronic conductivity (EC), and soil texture were used for illustration of the effects of fuzzy classification, kriging interpolation and data of soil properties used on determination of management zones. The results of classification showed that the soil texture-based management zones were with lower within-group variation but were not the pH- and EC-based management zones. The soil texture-based management zones were more robust than those pH- and EC-based. Moreover, compared with one of kriging membership values of fuzzy classification to determine management zones, the other of putting kriged soil properties into fuzzy classification got a lower misclassification rate. The approach of putting kriged soil properties into fuzzy classification was thus recommended in this study.en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:54:33Z (GMT). No. of bitstreams: 1
ntu-94-R92623007-1.pdf: 960578 bytes, checksum: 2daba27ea8a0d5257e47ad742f503488 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents頁次
摘要                          Ⅰ
英文摘要                        Ⅲ
目錄                          Ⅴ
表次                          Ⅶ
圖次                          Ⅷ
第一章 序論                       1
第二章 原理                       7
 第一節 模糊集群分析                  7
 第二節 地理統計                    10
第三章 材料與方法                    18
 第一節 研究場址與土壤基本性質的分析          18
 第二節 模糊集群分析結合克利金法            21
 第三節 模擬步驟                    23
 第四節 模糊集群分析的分組效果檢驗           25
 第五節 模糊集群分析與克利金法結合的兩種方法之適用性比較27
 第六節 主要應用軟體                  28
第四章 結果與討論                    30
 第一節 研究場址的土壤性質之基本統計及空間結構分析   30
 第二節 模糊集群分析                  39
 第三節 模糊集群分析與克利金法結合的兩種方法之適用性比較45
第五章 結論                       71
第六章 參考文獻                     72
dc.language.isozh-TW
dc.subject管理區zh_TW
dc.subject模糊集群分析zh_TW
dc.subject隸屬度函數zh_TW
dc.subject克利金zh_TW
dc.subjectkrigingen
dc.subjectmembership functionen
dc.subjectfuzzy clustering analysisen
dc.subjectmanagement zoneen
dc.title評估模糊集群分析結合克利金法在界定農地土壤管理區的適用性zh_TW
dc.titleAssessing the feasibility of fuzzy clustering analyses combined with kriging used for management zone delineation in agricultural soilsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳仁炫(Jen-Hshuan Chen),郭鴻裕,陳尊賢(Zueng-Sang Chen),莊愷瑋(Kai-Wei Juang)
dc.subject.keyword管理區,模糊集群分析,隸屬度函數,克利金,zh_TW
dc.subject.keywordmanagement zone,fuzzy clustering analysis,membership function,kriging,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2005-07-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
938.06 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved