請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36208完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳家揚老師 | |
| dc.contributor.author | Tzu-Yao Wen | en |
| dc.contributor.author | 溫子瑤 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:53:50Z | - |
| dc.date.available | 2006-08-03 | |
| dc.date.copyright | 2005-08-03 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-25 | |
| dc.identifier.citation | 1. Soto, A.M., Michaelson, C.L., Prechtl, N.V., Weill, B.C., Sonnenschein, C., Olea-Serrano, F., and Olea, N., Assays to measure estrogen and androgen agonists and antagonists. Reproductive Toxicology, 1998. 444: 9-28.
2. 林伯雄, 李季眉, 郭育良, 農業廢棄物及土壤中有機污染物之環境荷爾蒙效應研究. 微生物及環境荷爾蒙研討會論文集, 2000: 88-106. 3. 呂永淵, 楊順成, 農藥環境荷爾蒙劑之毒性評估. 第一屆環境荷爾蒙與持久性有機污染物研討會論文集, 2000: 113-124. 4. Preziosi, P., Endocrine disrupters as environmental signallers: an introduction. Pure and Applied Chemistry, 1998. 70: 1617-1631. 5. Lai, K.M., Scrimshaw, M.D., and Lester, J.N., The effects of natural and synthetic steroid estrogens in relation to their environmental occurrence. Critical Reviews in Toxicology, 2002. 32 (2): 113-132. 6. Jobling, S., Nolan, M., Tyler, C.R., Brighty, G., and Sumpter, J.P., Widespread sexual disruption in wild fish. Environmental Science & Technology, 1998. 32 (17): 2498-2506. 7. Loose-Mitchell, D.S. and Stancel, G.M., Estrogens and progestins, in Goodman & Gilman's The Pharmacological Basis of Therapeutics, Hardman, J.G., Limbird, L.E., and Gilman, A.G., Editors. 2001, The McGraw-Hill Companies: New York. 1597-1634. 8. Ying, G.G., Kookana, R.S., and Ru, Y.J., Occurrence and fate of hormone steroids in the environment. Environment International, 2002. 28 (6): 545-551. 9. D'Ascenzo, G., Di Corcia, A., Gentili, A., Mancini, R., Mastropasqua, R., Nazzari, M., and Samperi, R., Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Science of the Total Environment, 2003. 302 (1-3): 199-209. 10. Baronti, C., Curini, R., D'Ascenzo, G., Di Corcia, A., Gentili, A., and Samperi, R., Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environmental Science & Technology, 2000. 34 (24): 5059-5066. 11. Isobe, T., Shiraishi, H., Yasuda, M., Shinoda, A., Suzuki, H., and Morita, M., Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2003. 984 (2): 195-202. 12. Johnson, A.C. and Sumpter, J.P., Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environmental Science & Technology, 2001. 35 (24): 4697-4703. 13. Joss, A., Andersen, H., Ternes, T., Richle, P.R., and Siegrist, H., Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: Consequences for plant optimization. Environmental Science & Technology, 2004. 38 (11): 3047-3055. 14. Huber, M.M., Ternes, T.A., and von Gunten, U., Removal of estrogenic activity and formation of oxidation products during ozonation of 17 alpha-ethinylestradiol. Environmental Science & Technology, 2004. 38 (19): 5177-5186. 15. Svenson, A., Allard, A.S., and Ek, M., Removal of estrogenicity in Swedish municipal sewage treatment plants. Water Research, 2003. 37 (18): 4433-4443. 16. 黃政賢, 水處理工程. 曉園出版社, 1992. 17. Lee, B.C., Kamata, M., Akatsuka, Y., Takeda, M., Ohno, K., Kamei, T., and Magara, Y., Effects of chlorine on the decrease of estrogenic chemicals. Water Research, 2004. 38 (3): 733-739. 18. Chen C.-Y., Cheng H.-W., Wen T.-Y., Wang G.-S., Determination of estrogenic steroids in water using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. submitted to Chemosphere, 2005. 19. Travis A. Hanselman, D.A.G., and Ann C. Wilkle, Manure-borne estrogens as potential environmental contaminants: a review. Environmental Science & Technology, 2003. 37 (24): 5471-5477. 20. Birkett, J.W. and Lester, J.N., Properties of EDCs : steroid estrogens(natural and synthetic), in Endocrine disrupters in wastewater and sludge treatment processes, Birkett, J.W. and Lester, J.N., Editors. 2003, Lewis Publishers: Boca Raton, Florida, USA. 12-14. 21. Islinger, M., Pawlowski, S., Hollert, H., Volkl, A., and Braunbeck, T., Measurement of vitellogenin-mRNA expression in primary cultures of rainbow trout hepatocytes in a non-radioactive dot blot/RNAse protection-assay. Science of the Total Environment, 1999. 233 (1-3): 109-122. 22. Lange, R., Hutchinson, T.H., Croudace, C.P., and Siegmund, F., Effects of the synthetic estrogen 17 alpha-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry, 2001. 20 (6): 1216-1227. 23. Routledge, E.J. and Sumpter, J.P., Structural features of alkylphenolic chemicals associated with estrogenic activity. Journal of Biological Chemistry, 1997. 272 (6): 3280-3288. 24. Metcalfe, C.D., Metcalfe, T.L., Kiparissis, Y., Koenig, B.G., Khan, C., Hughes, R.J., Croley, T.R., March, R.E., and Potter, T., Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environmental Toxicology and Chemistry, 2001. 20 (2): 297-308. 25. Xiao, X.Y., McCalley, D.V., and McEvoy, J., Analysis of estrogens in river water and effluents using solid- phase extraction and gas chromatography-negative chemical ionisation mass spectrometry of the pentafluorobenzoyl derivatives. Journal of Chromatography A, 2001. 923 (1-2): 195-204. 26. Johnson, A.C., Belfroid, A., and Di Corcia, A., Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Science of the Total Environment, 2000. 256 (2-3): 163-173. 27. Carr, B.R. and Griffin, J.E., Fertility controls and its complications, in Williams Textbook of Endocrinology, Wilson, J.D., Foster, D.W., Kronenberg, H.M., and Reed, L.P., Editors. 1998, W. B. Saunders Company: Philadelphia. 901-925. 28. Arcand-Hoy, L.D., Nimrod, A.C., and Benson, W.H., Endocrine-modulating substances in the environment estrogenic effects of pharmaceutical products. International Journal of Toxicology, 1998. 17 (2): 139-158. 29. Orme, M.L., Back, D.J., and Breckenridge, A.M., Clinical pharmacokinetics of oral contraceptive steroids. Clin Pharmacokinet, 1983. 8 (2): 95-136. 30. Ternes, T.A., Kreckel, P., and Mueller, J., Behaviour and occurrence of estrogens in municipal sewage treatment plants - II. Aerobic batch experiments with activated sludge. Science of the Total Environment, 1999. 225 (1-2): 91-99. 31. Belfroid, A.C., Van der Horst, A., Vethaak, A.D., Schafer, A.J., Rijs, G.B.J., Wegener, J., and Cofino, W.P., Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. Science of the Total Environment, 1999. 225 (1-2): 101-108. 32. Desbrow, C., Routledge, E.J., Brighty, G.C., Sumpter, J.P., and Waldock, M., Identification of estrogenic chemicals in STW effluent. 1. chemical fractionation and in vitro biological screening. Environmental Science & Technology, 1998. 32 (11): 1549-1558. 33. Ternes, T.A., Stumpf, M., Mueller, J., Haberer, K., Wilken, R.D., and Servos, M., Behavior and occurrence of estrogens in municipal sewage treatment plants - I. Investigations in Germany, Canada and Brazil. Science of the Total Environment, 1999. 225 (1-2): 81-90. 34. Snyder, S.A., Keith, T.L., Verbrugge, D.A., Snyder, E.M., Gross, T.S., Kannan, K., and Giesy, J.P., Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environmental Science & Technology, 1999. 33 (16): 2814-2820. 35. Nasu, M., Goto, M., Kato, H., Oshima, Y., and Tanaka, H., Study on endocrine disrupting chemicals in wastewater treatment plants. Water Science and Technology, 2001. 43 (2): 101-108. 36. Kuch, H.M. and Ballschmiter, K., Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environmental Science & Technology, 2001. 35 (15): 3201-3206. 37. Cargouet, M., Perdiz, D., Mouatassim-Souali, A., Tamisier-Karolak, S., and Levi, Y., Assessment of river contamination by estrogenic compounds in Paris area (France). Science of the Total Environment, 2004. 324 (1-3): 55-66. 38. Lagana, A., Bacaloni, A., De Leva, I., Faberi, A., Fago, G., and Marino, A., Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Analytica Chimica Acta, 2004. 501 (1): 79-88. 39. Tabata, A., Kashiwada, S., Ohnishi, Y., Ishikawa, H., Miyamoto, N., Itoh, M., and Magara, Y., Estrogenic influences of estradiol-17 beta, p-nonylphenol and bis-phenol-A on Japanese Medaka (Oryzias latipes) at detected environmental concentrations. Water Science and Technology, 2001. 43 (2): 109-116. 40. 楊友仁, 陳福安, 都市水體之類雌激素化學分析及管理. 環境荷爾蒙與持久性有機污染物研討會論文集, 2004. 41. Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., and Buxton, H.T., Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environmental Science & Technology, 2002. 36 (6): 1202-1211. 42. Adlercreutz, H., Brown, J., Collins, W., Goebelsman, U., Kellie, A., Campbell, H., Spieler, J., and Braissand, G., The measurement of urinary steroid glucuronides as indexes of the fertile period in women. Journal of Steroid Biochemistry and Molecular Biology, 1982. 17 (6): 695-702. 43. Arnold, S.F., Vonier, P.M., Collins, B.M., Klotz, D.M., Guillette, L.J., and McLachlan, J.A., In vitro synergistic interaction of alligator and human estrogen receptors with combinations of environmental chemicals. Environmental Health Perspectives, 1997. 105: 615-618. 44. Biegel, L.B., Flaws, J.A., Hirshfield, A.N., O'Connor, J.C., Elliott, G.S., Ladics, G.S., Silbergeld, E.K., Van Pelt, C.S., Hurtt, M.E., Cook, J.C., and Frame, S.R., 90-day feeding and one-generation reproduction study in Crl:CD BR rats with 17 beta-estradiol. Toxicological Sciences, 1998. 44 (2): 116-142. 45. Biegel, L.B., Cook, J.C., Hurtt, M.E., and O'Connor, J.C., Effects of 17 beta-estradiol on serum hormone concentrations and estrous cycle in female Crl:CD BR rats: effects on parental and first generation rats. Toxicological Sciences, 1998. 44 (2): 143-154. 46. Seibert, B., Data from animal experiments and epidemiology data on tumorigenicity of estradiol valerate and ethinyl estradiol, in Endocrinically Active Chemcials in the Environment. 1996, UBA TEXTE 3/96: Berlin. 88-95. 47. Patyna, P.J., Davi, R.A., Parkerton, T.F., Brown, R.P., and Cooper, K.R., A proposed multigeneration protocol for Japanese medaka (Oryzias latipes) to evaluate effects of endocrine disruptors. Science of the Total Environment, 1999. 233 (1-3): 211-220. 48. Tyler, C.R., Jobling, S., and Sumpter, J.P., Endocrine disruption in wildlife: A critical review of the evidence. Critical Reviews in Toxicology, 1998. 28 (4): 319-361. 49. Berg, C., Halldin, K., Fridolfsson, A.K., Brandt, I., and Brunstrom, B., The avian egg as a test system for endocrine disrupters: effects of diethylstilbestrol and ethynylestradiol on sex organ development. Science of the Total Environment, 1999. 233 (1-3): 57-66. 50. Williams, T.D., Parental and first generation effects of exogenous 17 beta-estradiol on reproductive performance of female zebra finches (Taeniopygia guttata). Hormones and Behavior, 1999. 35 (2): 135-143. 51. Kloas, W., Lutz, I., and Einspanier, R., Amphibians as a model to study endocrine disruptors: II. estrogenic activity of environmental chemicals in vitro and in vivo. Science of the Total Environment, 1999. 225 (1-2): 59-68. 52. Palmer, B.D. and Palmer, S.K., Vitellogenin induction by xenobiotic estrogens in the red-eared turtle and African clawed frog. Environmental Health Perspectives, 1995. 103 Suppl 4: 19-25. 53. Billinghurst, Z., Clare, A.S., Fileman, T., McEvoy, J., Readman, J., and Depledge, M.H., Inhibition of barnacle settlement by the environmental oestrogen 4-nonylphenol and the natural oestrogen 17 beta oestradiol. Marine Pollution Bulletin, 1998. 36 (10): 833-839. 54. Shore, L.S., Kapulnik, Y., Bendor, B., Fridman, Y., Wininger, S., and Shemesh, M., Effects of estrone and 17-beta-estradiol on vegetative growth of Medicago-Sativa. Physiologia Plantarum, 1992. 84 (2): 217-222. 55. Pike, M.C., Spicer, D.V., Dahmoush, L., and Press, M.F., Estrogens, progestogens, normal breast cell-proliferation, and breast-cancer risk. Epidemiologic Reviews, 1993. 15 (1): 17-35. 56. Weisz A., B.F., Estrogen regulation of protooncogenes coding for nuclear proteins. Critical Reviews in Oncoggenesis, 1996. 4: 361-388. 57. Swaneck, G.E. and Fishman, J., Covalent binding of the endogenous estrogen 16-alpha-hydroxyestrone to estradiol-receptor in human-breast cancer-cells - characterization and intranuclear localization. Proceedings of the National Academy of Sciences of the United States of America, 1988. 85 (21): 7831-7835. 58. Davis, D.L., Telang, N.T., Osborne, M.P., and Bradlow, H.L., Medical hypothesis: Bifunctional genetic-hormonal pathways to breast cancer. Environmental Health Perspectives, 1997. 105: 571-576. 59. Service, R.F., New role for estrogen in cancer? Science, 1998. 279 (5357): 1631-1633. 60. Andersen, H., Siegrist, H., Halling-Sorensen, B., and Ternes, T.A., Fate of estrogens in a municipal sewage treatment plant. Environmental Science & Technology, 2003. 37 (18): 4021-4026. 61. 黃政賢, 污水工程學精要. 曉園出版社, 1993. 62. Vader, J.S., van Ginkel, C.G., Sperling, F., de Jong, J., de Boer, W., de Graaf, J.S., van der Most, M., and Stokman, P.G.W., Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere, 2000. 41 (8): 1239-1243. 63. Jurgens, M.D., Holthaus, K.I.E., Johnson, A.C., Smith, J.J.L., Hetheridge, M., and Williams, R.J., The potential for estradiol and ethinylestradiol degradation in English rivers. Environmental Toxicology and Chemistry, 2002. 21 (3): 480-488. 64. Lai, K.M., Scrimshaw, M.D., and Lester, J.N., Biotransformation and bioconcentration of steroid estrogens by Chlorella vulgaris. Applied and Environmental Microbiology, 2002. 68 (2): 859-864. 65. Jarvenpaa, P., Kosunen, T., Fotsis, T., and Adlercreutz, H., Invitro metabolism of estrogens by isolated intestinal microorganisms and by human fecal microflora. Journal of Steroid Biochemistry and Molecular Biology, 1980. 13 (3): 345-349. 66. Hu J., Cheng S., Aizawa T., Terao Y., and Kunikane S., Products of aqueous chlorination of 17β-estradiol and their estrogenic activities. Environmental Science & Technology, 2003. 37: 5665-5670. 67. Alum, A., Yoon, Y., Westerhoff, P., and Abbaszadegan, M., Oxidation of bisphenol A, 17 beta-estradiol, and 17 alpha-ethynyl estradiol and byproduct estrogenicity. Environmental Toxicology, 2004. 19 (3): 257-264. 68. Moriyama, K., Matsufuji, H., Chino, M., and Takeda, M., Identification and behavior of reaction products formed by chlorination of ethynylestradiol. Chemosphere, 2004. 55 (6): 839-847. 69. Itoh, S., Ueda, H., Naasaka, T., Nakanishi, G., and Sumitomo, H., Evaluating variation of estrogenic effect by drinking water chlorination with the MVLN assay. Water Science and Technology, 2000. 42 (7-8): 61-69. 70. Maccarthy, P. and Suffet, I.H., Aquatic humic substances and their influence on the fate and treatment of pollutants. Acs Symposium Series, 1989. 219: R17-R30. 71. Chang, S., Waite, T.D., Schafer, A.I., and Fane, A.G., Adsorption of trace steroid estrogens to hydrophobic hollow fibre membranes. Desalination, 2002. 146 (1-3): 381-386. 72. Schafer, A.I., Nghiem, L.D., and Waite, T.D., Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis. Environmental Science & Technology, 2003. 37 (1): 182-188. 73. de Rudder, J., Van de Wiele, T., Dhooge, W., Comhaire, F., and Verstraete, W., Advanced water treatment with manganese oxide for the removal of 17 alpha-ethynylestradiol (EE2). Water Research, 2004. 38 (1): 184-192. 74. Yoon, Y.M., Westerhoff, P., Snyder, S.A., and Esparza, M., HPLC-fluorescence detection and adsorption of bisphenol A, 17 beta-estradiol, and 17 alpha-ethynyl estradiol on powdered activated carbon. Water Research, 2003. 37 (14): 3530-3537. 75. 行政院環保署, 飲用水水質標準. 環署毒字第000四四二八號令發布 http://law.epa.gov.tw/lexicon.php, 1998. (2005.3.17連結) 76. 謝啟男, 濾池濾料規格及其試驗方法之研究. 中華民國自來水協會技術專題研討會, 1985. 77. Walker, D., Oestrogenicity and wastewater recycling: experience from Essex and Suffolk water. Water Environmental Management, 2000. 14: 427-431. 78. Boyd, G.R., Reemtsma, H., Grimm, D.A., and Mitra, S., Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Science of the Total Environment, 2003. 311 (1-3): 135-149. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36208 | - |
| dc.description.abstract | 天然動情激素(E2)與其代謝物-雌素酮(E1)、雌素醇(E3),以及人工合成雌性激素-乙炔動情激素(EE2)具有生物活性,可能廣泛影響環境水體生態。目前針對減少這類化合物排放之探討,著重在污水處理廠之移除效率;然而對於以河水、水庫作為飲用水水源的我們,對飲用水處理單元是否能夠有效去除雌激素所知極為有限。
本研究以淨水場之原水為基質,添加100或500 ng/L之雌激素標準品,然後於實驗室模擬前加氯、混凝沉澱、快濾及後加氯等典型之淨水程序,以瞭解各處理單元對於移除類固醇雌激素之效率;並同時調查台北市長興淨水場原水及清水中雌激素的濃度。樣本以固相萃取結合液相層析/質譜/質譜儀進行定量分析。 在前加氯單元,E1、E2、EE2及E3之平均去除率約在20-40%;混凝沉澱則可移除17-52% 的雌激素;快濾單元部份,除E3外,其餘皆有95 % 以上的去除率;在後加氯方面,四種化合物之去除率變異較大,去除率約在17-44%。顯然地,快濾機制的移除效果遠優於其他淨水單元( p<0.001)。另外經全流程處理之後,E1、E2和EE2的去除率皆大於88%,E3去除效果較差,低於84%。 濃度對去除率的影響,E1和E3在四個處理單元的去除率皆無明顯差異;E2在前加氯及混凝/沉澱二個單元則有統計上之差異( p <0.05),前加氯單元以高濃度時去除效果較佳,混凝/沉澱單元則反之;EE2的移除只在後加氯單元受濃度差異之影響( p = 0.002);E3之移除率在快濾及後加氯單元雖未達顯著差異( p = 0.053與0.059),但平均去除率皆相差約9%。全流程處理後,只有E3受濃度差異之影響( p = 0.002)。 各化合物間去除趨勢顯示,在500 ng/L濃度,前加氯單元,E2去除效果顯著大於E3( p = 0.031);混凝/沉澱單元中四種化合物間均未達統計上之差異;快濾單元及全流程單元,E3去除率亦顯著小於E1、E2及EE2( p <0.001)。另外經全流程處理之後,E1、E2和EE2的去除率皆大於88%,E3去除效果較差,低於84%。 濃度對去除率的影響,E1和E3在四個處理單元的去除率皆無明顯差異;E2在前加氯及混凝/沉澱二個單元則有統計上之差異( p <0.05),前加氯單元以高濃度時去除效果較佳,混凝/沉澱單元則反之;EE2的移除只在後加氯單元受濃度差異之影響( p = 0.002);E3之移除率在快濾及後加氯單元雖未達顯著差異( p = 0.053與0.059),但平均去除率皆相差約9%。全流程處理後,只有E3受濃度差異之影響( p = 0.002)。 各化合物間去除趨勢顯示,在500 ng/L濃度,前加氯單元,E2去除效果顯著大於E3( p = 0.031);混凝/沉澱單元中四種化合物間均未達統計上之差異;快濾單元及全流程單元,E3去除率亦顯著小於E1、E2及EE2( p≦0.001);後加氯單元中此四者間亦無達統計上之差異。在100 ng/L濃度部分,四種化合物在各處理單元之去除趨勢並無一致,除混凝/沉澱單元中E2去除效果顯著大於EE2外( p = 0.028),其餘皆無統計上之顯著差異。 淨水場之原水有些樣本可偵測到微量之E1、E2、EE2及E3;在高於偵測極限的樣本中,平均濃度為1.57-2.37 ng/L;但是在淨水場出水樣本中,四個化合物含量皆低於偵測極限(<0.06-0.15 ng/L)。 本研究顯示淨水場各處理單元移除雌激素之效率的確有所差異;整體而言,淨水流程可去除大部份的雌激素,且原水中之含量屬極微量,因此民眾經由此途徑之暴露應可忽略。 | zh_TW |
| dc.description.abstract | The native estrogenic steroid 17β-estradiol ( E2 ) and it’s metabolites, estrone ( E1 ) and estriol ( E3 ), and the synthetic steroid 17α-ethinyl estradiol(EE2)may distribute to water bodies and impact the eco-system with their estrogenic potency. Most studies focus on the removal efficiency of the sewage treatment plants regarding their emissions; however, there is limited information on the elimination of estrogenic chemicals during drinking water treatment processes.
This research investigated the removal rates of drinking water treatment units by spiking two levels(100 and 500 ng/L)of the four estrogens into raw water. Four processes were simulated in the laboratory to evaluate the removal efficiencies:pre-chlorination, coagulation/sedimentation, rapid filtration, and post-chlorination. The study also reported the concentrations of the four estrogens in the raw water and treated water. Solid-phase extraction and LC/MS/MS with isotope-dilution techniques were utilized to analyze the four chemicals. 20-40% of E1, E2, EE2 and E3 were removed in the pre-chlorination unit; the coagulation/sedimentation procedure eliminated 17-52% of the chemicals, and E2 was the highest. The rapid filtration step took out over 95% of the compounds expect for E3 ( 84-92%). The removal efficacy in post -chlorination process varied widely, which was 17-44%, and E2 was the lowest one. Obviously, the rapid filtration treatment is superior to the other processes in removing the chemicals ( p<0.0001 ). The whole procedure got rid of over 88% of the chemicals excluding the E3 ( 64-85% ). In terms of the influence of spiked levels, there is no significant difference of E1 and E3 removal among the four processes, but it was significant for E2 in the pre-chlorination and coagulation/sedimentation units ( p<0.05 ). For E2, better efficiencies were observed at 500 ng/L in the pre-chlorination; however, the removal efficacy of coagulation/ sedimentation unit was higher at 100 ng/L. For EE2, there was only difference in the post-chlorination step ( p=0.002 ). The elimination rates between these two spiked levels for E3 in the rapid filtration treatment and post-chlorination units and almost reach statisitical significance ( p=0.053 and 0.059 ). Spiked levels did not influence the elimination performance through the whole procedure except for E3 ( p=0.002 ). At 500 ng/L level, the removal efficacy of E3 was much lower than that of E2 in pre-chlorination ( p=0.031 ), the removal percentage of E3 was also notably lower than those of E1, E2 and EE2 in rapid filtration and through the complete process ( p ≦0.001 ). There was no statistical difference among the removal rates of the four compounds in the coagulation/sedimentation and post-chlorination units. Regarding the 100 ng/L level, the removal efficiencies of the four units for the four estrogenic compounds varied. Nevertheless, the only difference in the removal efficacy for the four compounds was the coagulation/sedimentation, which E2 was taken away much more than EE2 ( p=0.028 ). The four steroid estrogens were detected from same raw waters. Among the detected samples, the average levels were 1.57-2.37 ng/L. On the other hand, none of the four compounds was detected in the treated drinking water. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:53:50Z (GMT). No. of bitstreams: 1 ntu-94-R92844005-1.pdf: 739592 bytes, checksum: 8cc9d28387193394423a5c74dcc0b107 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要 II
英文摘要 IV 表目錄 IX 圖目錄 X 第一章 前言 - 1 - 1.1 研究背景 - 1 - 1.2 研究目的 - 3 - 第二章 文獻探討 - 4 - 2.1類固醇雌激素的物化特性及來源 - 4 - 2.2類固醇雌激素之分布 - 6 - 2.3類固醇雌激素的生態影響及健康效應 - 9 - 2.4類固醇雌激素之降解移除 - 10 - 2.4-1微生物對類固醇雌激素之降解 - 10 - 2.4-2 氧化性物種對類固醇雌激素之作用 - 12 - 2.4-3 過濾作用移除類固醇雌激素之效果 - 13 - 2.5 飲用水處理單元機制 - 14 - 2.5-1 加氯消毒 - 15 - 2.5-2 混凝沉澱 - 16 - 2.5-3 過濾 - 18 - 第三章 研究方法與材料 - 20 - 3.1 試劑及儀器 - 20 - 3.1-1 試劑與材料 - 20 - 3.1-2 儀器設備 - 23 - 3.2採樣 - 25 - 3.2-1 採樣地點 - 25 - 3.2-2 採樣步驟及樣品保存 - 25 - 3.3 各單元條件之設計 - 26 - 3.3-1 前加氯 - 27 - 3.3-2 混凝沉澱 - 27 - 3.3-3 快濾 - 28 - 3.3-4 後加氯 - 30 - 3.3-5 全流程 - 30 - 3.4 樣品前處理步驟 - 30 - 3.5 儀器分析條件 - 32 - 3.5-1 液相層析儀之條件設定 - 32 - 3.5-2 質譜儀之條件設定 - 32 - 3.6 品保/品管 - 33 - 3.7 資料處理 - 34 - 第四章 結果與討論 - 35 - 4.1各單元去除類固醇雌激素之效率 - 35 - 4.2類固醇雌激素之相對去除趨勢 - 37 - 4.3全流程之去除效果 - 41 - 4.4濾料材質探討 - 42 - 4.5類固醇雌激素在淨水場之去除效率 - 43 - 第五章 結論及建議 - 45 - 參考文獻 - 47 - 附 表 - 54 - 附 圖 - 65 - | |
| dc.language.iso | zh-TW | |
| dc.subject | 後加氯 | zh_TW |
| dc.subject | 去除效率 | zh_TW |
| dc.subject | 固相萃取 | zh_TW |
| dc.subject | 液相層析/質譜/質譜儀 | zh_TW |
| dc.subject | 前加氯 | zh_TW |
| dc.subject | 混凝/沉澱 | zh_TW |
| dc.subject | 快濾 | zh_TW |
| dc.subject | rapid filtration | en |
| dc.subject | post-chlorination | en |
| dc.subject | removal efficiency | en |
| dc.subject | solid-phase extraction | en |
| dc.subject | LC/MS/MS | en |
| dc.subject | pre-chlorination | en |
| dc.subject | coagulation/sedimentation | en |
| dc.title | 飲用水處理步驟移除類固醇雌激素雌激素之效率 | zh_TW |
| dc.title | Removal of steroid estrogens in drinking water treatment processes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林嘉明老師,王根樹老師,吳焜裕老師 | |
| dc.subject.keyword | 去除效率,固相萃取,液相層析/質譜/質譜儀,前加氯,混凝/沉澱,快濾,後加氯, | zh_TW |
| dc.subject.keyword | removal efficiency,solid-phase extraction,LC/MS/MS,pre-chlorination,coagulation/sedimentation,rapid filtration,post-chlorination, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-25 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 722.26 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
