請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36192完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 汪重光(Chorng-Kuang Wang) | |
| dc.contributor.author | Chia-Hung Hsu | en |
| dc.contributor.author | 徐嘉宏 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:53:26Z | - |
| dc.date.available | 2010-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-25 | |
| dc.identifier.citation | [1] IQ Error Calibration in Transmitter. MAXIM Technical Report, 2001.
[2] Andreas Schuchert, Ralph Hasholzner, and Patrick Antonie, A novel IQ imbalance compensation scheme for the reception of OFDM signals. IEEE Transactions on Signal Processing, 49(10):2335 2344, 2001. [3] J. Tubbax, A. Fort, L. Van der Perre, S. Donnay, Marc Engels, Marc Moonen and Hugo De Man, Joint Compensation of IQ imbalance and Frequency Offset in OFDM Systems. Globecom, p.p. 2365 2369, 2003. [4] Vincent K.-P. Ma and Tommi Ylamurto, Analysis of IQ imbalance on initial frequency offset estimation in direct down-conversion receivers. Workshop in Signal Processing Advances in Wireless Communications, 158 161, March 2001. [5] Hsin-Yu Kang, “Design and Implememtation of an MC-CDMA Baseband Transceiver,” , Jul. 2003. [6] R. van Nee and R. Prasad, “OFDM for Wireless Multimedia Communications,” 3rd ed., Artech House, Boston, Jul. 2000. [7] A. Pandharipande, “Principles of OFDM” IEEE Potential, Apr.-May. 2002. [8] “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High-speed Physical Layer in the 5 GHz Band IEEE std. 802.11a,” 1999. [9] L. B. Jackson., “Digital Filters and Signal Processing,” Toppan, 1996. [10] L. Litwin, “An Introduction to Multicarrier Modulation,” IEEE Potential, Apr.- May. 2000. [11] A. Doufexi et al., “A Comparison of the HIPERLAN/2 and IEEE 802.11a Wireless LAN Standards,” IEEE Comm. Mag., May 2002. [12] Z. H. Belkov and B. Spasenovski, “Performance Comparison of IEEE and ETSI HIPERLAN Type 1 under Influence of Burst Noise Channel,” IEEE WCNC, Sept. 2002. [13] Simon R. Saunders, “Antennas and Propagation for Wireless Communiication Systems,” Wiely, 2001. [14] A. A. M. Saleh and R. A. Valenzuela, “A Static Model for Indoor Multipath Propagation,” IEEE JSAC, vol. 5, 1987. [15] P. H. Moose, “A Technique for Orthoganal Frequency Division Multiplexing Frequency Offset Correcion,” IEEE Trans. On Comm., Oct. 1994. [16] T. Pollet et al, “BER Sensitivity of OFDM System to Carrier Frequency Offset and Wiener Phase Noise,” IEEE Trans. On Comm., Feb./Mar./Apr. 1995. [17] E. Costa, S. Pupolin, “M-QAM-OFDM System Performance in the Presence of a Nonlinear Amplifier and Phase Noise,” IEEE Trans. On Comm., vol. 50, pp. 462 - 472, Mar. 2002. [18] D. Kreb, O. Ziemann and R. Dietzel, “Electronic simulation of phase noise,” Eur. Trans. Telecommum, vol. 6, pp. 671 - 674, Nov./Dec. 1995. [19] Marc Engels, Wireless OFDM Sytems, KAP, 2002. [20] T. Pollet et al., “The BER Performance of OFDM Systems Using Non-Synchronized Sampling,” IEEE GLOBECOM, Nov./Dec. 1994. [21] M. Sliskovic., “Carrier and Sampling Frequency Offset Estimation and Correction in Multicarrier Systems,” IEEE GLOBECOM, Nov. 2001. [22] H. Nogami and T. Nagashima, “A Frequency and Timing Period Acquisition Technique for OFDM Systems,” IEEE Int. Symp. on PIMRC, Sep. 1995. [23] Wei-Hsiang Tseng, “OFDM Baseband Transceiver Architecture Design and Implementation for IEEE 802.11a,” Jun. 2003. [24] Behzad Razavi, RF Microelectronics. Prentice Hall, 1998. [25] L. Erup et al, Interpolation in Digital Modems-PartII: Implenmentation and Performance. IEEE Trans. on Comm., June 1993. [26] T. Pollet and M. Peeters, “Synchronization with DMT Modulation,” IEEE Comm. Mag., Apr. 1999. [27] J. J. van de Beek et al., “ML Estimation of Time and Frequency Offset in OFDM Systems,” IEEE Trans. on Signal Processsing, Jul. 1997. [28] D. Matic et al., “OFDM Timing Synchronization: Possibilities and Limits to the Usage of the Cyclic Prefix for Maximum Likelihood Estimation,” IEEE Vehicular Tech. Conf., Sep. 1999. [29] S. Johansson et al., “Implementation of an OFDM Synchronization Algorithm,” IEEE Midwest Symp. on Circuit and Systems, Aug. 1999. [30] J. J. van de Beek et al., “Low-Complex Frame Synchronization in OFDM Systems,” IEEE Int. Conf. on Universal Personal Comm., Nov. 1995. [31] D. Landstrom et al., “Symbol Time Offset Estimation in Coherent OFDM Systems,” IEEE Trans. on Comm., Apr. 2002. [32] N. Lashkarian and S. Kiaei, “Minimum Variance Unbiased Estimation of Frequency Offset in OFDM Systems, a Blind Synchronization Approach,” IEEE Proc. ICASSP, Jun. 2000. [33] S. Ghahramani, “Fundamentals of Probability,” Prentice-Hall, 1996. [34] S. Haykin, “Communication Systems,” 4th ed., John Wiley, 2001. [35] L. Jia et al., A New VLSI-Oriented FFT Algorithm and Implementation. IEEE ADIC Conf., Sept. 1998. [36] L. B. Jackdon, Digital Filters and Signal Processing. 3rd ed., Toppan, 1996. [37] Patrick Vandenameele, Liesbet Van der Perre and Marc Engels, Space Division Multiple Access for Wireless Local Area Neetworks. The Kluwer International Series in Engineering and Computer Science, Kluwer Academic Publishers, 2001. [38] J. Tubbax, B. C´ome, L. Van der Perre, S. Donnay and Marc Engels, IQ imbalance compensation for OFDM systems. IEEE International Conference on Communucations ICC,5:3403 3407 2003. [39] Stratix EP1S80 DSP Development Board Data Sheet. ver. 1.1, May, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36192 | - |
| dc.description.abstract | 在本篇論文中,提出一個適用於IEEE 802.11 a無線區域網路系統之實虛部不對稱自我校準演算法。此演算法是在開機時由基頻接收機量測一連串的單頻信號來達到,而此單頻信號的頻率是傳送機所傳送之單頻信號頻率的兩倍。在實際的資料傳送時,剩下的實虛部不對稱量也會被繼續追蹤。因此,對於無線區域網路系統的射頻前端之要求可以大大的放寬。此外,藉由所提出的演算法,即使在傳送機和接收機都有 ±5% 的增益不對稱、 ±5˚ 的相位不對稱以及 ±232仟赫茲的載波頻率偏移的情況下,信噪比的損失也會小於0.5dB。
接下來是先由C++建立802.11a的基頻系統模型,包含浮點數及定點數模擬。再根據硬體化的定點數模擬來寫Verilog RTL程式,此外,由Simplify Pro 7.3做合成以及QuartusII 3.0來做電路的放置及繞線,然後整個IEEE 802.11的基頻收發機由Altera Stratix EP1S80 DSP板操作在40MHz來實現,總共使用了約32000個邏輯單元。最後,整個系統的量測是由Tetronix TLA 715的樣本產生器及邏輯分析儀來達到。 | zh_TW |
| dc.description.abstract | Based on the single tone power evaluation (STPE), a self-calibration algorithm of I/Q mismatch is proposed for the IEEE 802.11a WLAN systems. The self-calibration algorithm is performed by the digital baseband at transceiver start-up to measure the signal power of the single tone signal, which is located at the double frequency band at the receiver. Furthermore, the residual I/Q mismatch is tracked during the physical data transmission. Therefore, the design requirements of the RF front-end for the WLAN OFDM transceiver are alleviated. According to the proposed algorithm, the residual signal-to-noise ratio (SNR) degradation is totally less than $0.5$-dB with $pm5 \%$ gain mismatch ($Delta G$) and $pm5^circ$ phase mismatch ($Delta heta$) in the transmitter and receiver respectively, and carrier frequency offset (CFO $=pm232$kHz).
The system simulation of the IEEE 802.11a WLAN baseband transceiver is modeled by C++. Furthermore, it consists of 2-phase, floating and fixed point. The hardware-like fixed-point simulation, which considers the finite word length effect, is used to develop the Verilog RTL code. Besides, the Simplify Pro 7.3 and QuartusII 3.0 are used to synthesis and place and route of the Verilog RTL respectively. Moreover, the prototype of the IEEE 802.11a WLAN baseband transceiver is realized by Altera Stratix EP1S80 DSP development board with about 32000 logic elements at 40MHz. Finally, the system evaluations are measured by Tektronix TLA715 pattern generator and logic analyzer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:53:26Z (GMT). No. of bitstreams: 1 ntu-94-R92943035-1.pdf: 6166760 bytes, checksum: 7afb5a9e48212f37ebb331fa15fac111 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Basic Principles of OFDM and IEEE 802.11a Standard 3 2.1 OFDM Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Overview of OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 OFDM Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 Typical OFDM Transceiver . . . . . . . . . . . . . . . . . . . . . 9 2.2 Features of IEEE 802.11a Standard . . . . . . . . . . . . . . . . . . . . . 10 3 Wireless Channel Model and Transceiver Design 17 3.1 Wireless Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 Power Amplifier Nonlinearity . . . . . . . . . . . . . . . . . . . . 20 3.1.2 Power Delay Profile (PDP) . . . . . . . . . . . . . . . . . . . . . . 20 3.1.3 Rayleigh Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.4 Carrier Frequency Offset (CFO) . . . . . . . . . . . . . . . . . . . 23 3.1.5 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.6 I/Q Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.7 DC Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.8 Timing Frequency Offset (TFO) . . . . . . . . . . . . . . . . . . . 32 3.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.1 Delay Correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.2 Matched Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.3 Carrier Recovery (CR) Loop . . . . . . . . . . . . . . . . . . . . . 40 3.2.4 Timing Recovery (TR) Loop . . . . . . . . . . . . . . . . . . . . . 42 3.3 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Calibration Algorithm and Architecture of the I/Q Mismatch 47 4.1 Coarse Calibration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Fine Calibration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.1 Frequency Domain Approach . . . . . . . . . . . . . . . . . . . . 54 4.2.2 Time Domain Approach . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Calibration Timing Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 FPGA Implementation 61 5.1 Introduction to FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 FPGA Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3 FPGA Implementation Platform . . . . . . . . . . . . . . . . . . . . . . . 63 5.4 Transceiver Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4.1 Complex Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4.2 Arc Tangent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.4.3 I/Q Mismatch Compensation and Pre-Compensation Circuits . . 68 5.4.4 Matched Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.5 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6 Conclusion 79 A Synplify Pro 81 A.1 Synthesis Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 B Quartus II 87 B.1 Quartus II 3.0 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 87 C PG and LA 97 C.1 Acute PG and LA Instructions . . . . . . . . . . . . . . . . . . . . . . . 97 | |
| dc.language.iso | en | |
| dc.subject | 實虛部不對稱 | zh_TW |
| dc.subject | 無線區域網路 | zh_TW |
| dc.subject | Calibration | en |
| dc.subject | OFDM | en |
| dc.subject | I/Q Mismatch | en |
| dc.subject | FPGA | en |
| dc.title | 應用於無線區域網路正交分頻多工系統之實虛部不對稱自我校準演算法及FPGA系統模型驗證 | zh_TW |
| dc.title | Self I/Q Mismatch Calibration Algorithm and FPGA Prototype for WLAN OFDM Baseband Transceiver | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周世傑(Shyh-Jye Jou),闕志達(Tzi-Dar Chiueh),吳安宇(An-Yeu Wu),薛木添(Muh-Tian Shiue) | |
| dc.subject.keyword | 無線區域網路,實虛部不對稱, | zh_TW |
| dc.subject.keyword | I/Q Mismatch,Calibration,FPGA,OFDM, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 6.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
