Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36171
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃麗華
dc.contributor.authorYi-Chieh Perngen
dc.contributor.author彭義傑zh_TW
dc.date.accessioned2021-06-13T07:52:56Z-
dc.date.available2005-08-02
dc.date.copyright2005-08-02
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citationAlmazan, F., Gonzalez, J. M., Penzes, Z., Izeta, A., Calvo, E., Plana-Duran, J., and Enjuanes, L. (2000). Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 97, 5516-5521.
Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., and Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300, 1763-1767.
Arden, K. E., Nissen, M. D., Sloots, T. P., and Mackay, I. M. (2005). New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia. J Med Virol 75, 455-462.
Baker, S. C., Shieh, C. K., Soe, L. H., Chang, M. F., Vannier, D. M., and Lai, M. M. (1989). Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein. J Virol 63, 3693-3699.
Baker, S. C., Yokomori, K., Dong, S., Carlisle, R., Gorbalenya, A. E., Koonin, E. V., and Lai, M. M. (1993). Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol 67, 6056-6063.
Balakirev, M. Y., Jaquinod, M., Haas, A. L., and Chroboczek, J. (2002). Deubiquitinating function of adenovirus proteinase. J Virol 76, 6323-6331.
Bartenschlager, R. (2002). Hepatitis C virus replicons: potential role for drug development. Nat Rev Drug Discov 1, 911-916.
Belsham, G. J., and Brangwyn, J. K. (1990). A region of the 5' noncoding region of foot-and-mouth disease virus RNA directs efficient internal initiation of protein synthesis within cells: involvement with the role of L protease in translational control. J Virol 64, 5389-5395.
Belsham, G. J., and Sonenberg, N. (1996). RNA-protein interactions in regulation of picornavirus RNA translation. Microbiol Rev 60, 499-511.
Bhardwaj, K., Guarino, L., and Kao, C. C. (2004). The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J Virol 78, 12218-12224.
Bonilla, P. J., Hughes, S. A., and Weiss, S. R. (1997). Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. J Virol 71, 900-909.
Borman, A. M., Kirchweger, R., Ziegler, E., Rhoads, R. E., Skern, T., and Kean, K. M. (1997). elF4G and its proteolytic cleavage products: effect on initiation of protein synthesis from capped, uncapped, and IRES-containing mRNAs. Rna 3, 186-196.
Brierley, G. P., Davis, M. H., Cragoe, E. J., Jr., and Jung, D. W. (1989). Kinetic properties of the Na+/H+ antiport of heart mitochondria. Biochemistry 28, 4347-4354.
Brown, B. A., and Ehrenfeld, E. (1979). Translation of poliovirus RNA in vitro: changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology 97, 396-405.
Casais, R., Thiel, V., Siddell, S. G., Cavanagh, D., and Britton, P. (2001). Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75, 12359-12369.
Crotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R., and Cameron, C. E. (2000). The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med 6, 1375-1379.
Culver, G. M., Consaul, S. A., Tycowski, K. T., Filipowicz, W., and Phizicky, E. M. (1994). tRNA splicing in yeast and wheat germ. A cyclic phosphodiesterase implicated in the metabolism of ADP-ribose 1',2'-cyclic phosphate. J Biol Chem 269, 24928-24934.
Denison, M. R., Hughes, S. A., and Weiss, S. R. (1995). Identification and characterization of a 65-kDa protein processed from the gene 1 polyprotein of the murine coronavirus MHV-A59. Virology 207, 316-320.
Denison, M. R., and Perlman, S. (1986). Translation and processing of mouse hepatitis virus virion RNA in a cell-free system. J Virol 60, 12-18.
Denison, M. R., Zoltick, P. W., Hughes, S. A., Giangreco, B., Olson, A. L., Perlman, S., Leibowitz, J. L., and Weiss, S. R. (1992). Intracellular processing of the N-terminal ORF 1a proteins of the coronavirus MHV-A59 requires multiple proteolytic events. Virology 189, 274-284.
Dorner, A. J., Semler, B. L., Jackson, R. J., Hanecak, R., Duprey, E., and Wimmer, E. (1984). In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J Virol 50, 507-514.
Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A., et al. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348, 1967-1976.
Eickmann, M., Becker, S., Klenk, H. D., Doerr, H. W., Stadler, K., Censini, S., Guidotti, S., Masignani, V., Scarselli, M., Mora, M., et al. (2003). Phylogeny of the SARS coronavirus. Science 302, 1504-1505.
Esper, F., Shapiro, E. D., Weibel, C., Ferguson, D., Landry, M. L., and Kahn, J. S. (2005a). Association between a novel human coronavirus and Kawasaki disease. J Infect Dis 191, 499-502.
Esper, F., Weibel, C., Ferguson, D., Landry, M. L., and Kahn, J. S. (2005b). Evidence of a novel human coronavirus that is associated with respiratory tract disease in infants and young children. J Infect Dis 191, 492-498.
Gao, H. Q., Schiller, J. J., and Baker, S. C. (1996). Identification of the polymerase polyprotein products p72 and p65 of the murine coronavirus MHV-JHM. Virus Res 45, 101-109.
Gibbs, A. J., Gibbs, M. J., and Armstrong, J. S. (2004). The phylogeny of SARS coronavirus. Arch Virol 149, 621-624.
Gorbalenya, A. E. (2001). Big nidovirus genome. When count and order of domains matter. Adv Exp Med Biol 494, 1-17.
Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., and Blinov, V. M. (1989). Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res 17, 4847-4861.
Gorbalenya, A. E., Koonin, E. V., and Lai, M. M. (1991). Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett 288, 201-205.
Guan, Y., Zheng, B. J., He, Y. Q., Liu, X. L., Zhuang, Z. X., Cheung, C. L., Luo, S. W., Li, P. H., Zhang, L. J., Guan, Y. J., et al. (2003). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276-278.
Harcourt, B. H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K. M., Smith, C. M., Rota, P. A., and Baker, S. C. (2004). Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol 78, 13600-13612.
Herold, J., Gorbalenya, A. E., Thiel, V., Schelle, B., and Siddell, S. G. (1998). Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate. J Virol 72, 910-918.
Herold, J., Siddell, S. G., and Gorbalenya, A. E. (1999). A human RNA viral cysteine proteinase that depends upon a unique Zn2+-binding finger connecting the two domains of a papain-like fold. J Biol Chem 274, 14918-14925.
Hertzig, T., Scandella, E., Schelle, B., Ziebuhr, J., Siddell, S. G., Ludewig, B., and Thiel, V. (2004). Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA. J Gen Virol 85, 1717-1725.
Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., and Pohlmann, S. (2005). Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 102, 7988-7993.
Holmes, K. V. (2001). In Fields Virology edtion. 4, Chapter.36.
Ivanov, K. A., Thiel, V., Dobbe, J. C., van der Meer, Y., Snijder, E. J., and Ziebuhr, J. (2004). Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78, 5619-5632.
Kanjanahaluethai, A., and Baker, S. C. (2000). Identification of mouse hepatitis virus papain-like proteinase 2 activity. J Virol 74, 7911-7921.
Kim, J. C., Spence, R. A., Currier, P. F., Lu, X., and Denison, M. R. (1995). Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor E64d. Virology 208, 1-8.
Koh, D. C., Wong, S. M., and Liu, D. X. (2003). Synergism of the 3'-untranslated region and an internal ribosome entry site differentially enhances the translation of a plant virus coat protein. J Biol Chem 278, 20565-20573.
Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., et al. (2003). A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348, 1953-1966.
Kuang, W. F., Chow, L. P., Wu, M. H., and Hwang, L. H. (2005). Mutational and inhibitive analysis of SARS coronavirus 3C-like protease by fluorescence resonance energy transfer-based assays. Biochem Biophys Res Commun 331, 1554-1559.
Kumaran, D., Eswaramoorthy, S., Studier, F. W., and Swaminathan, S. (2005). Structure and mechanism of ADP-ribose-1'-monophosphatase (Appr-1'-pase), a ubiquitous cellular processing enzyme. Protein Sci 14, 719-726.
Kuo, C. J., Chi, Y. H., Hsu, J. T., and Liang, P. H. (2004). Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate. Biochem Biophys Res Commun 318, 862-867.
Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G. M., Ahuja, A., Yung, M. Y., Leung, C. B., To, K. F., et al. (2003). A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348, 1986-1994.
Lim, K. P., and Liu, D. X. (1998). Characterization of the two overlapping papain-like proteinase domains encoded in gene 1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kDa protein. Virology 245, 303-312.
Lim, K. P., Ng, L. F., and Liu, D. X. (2000). Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products. J Virol 74, 1674-1685.
Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., et al. (2003). The Genome sequence of the SARS-associated coronavirus. Science 300, 1399-1404.
Nasr, F., and Filipowicz, W. (2000). Characterization of the Saccharomyces cerevisiae cyclic nucleotide phosphodiesterase involved in the metabolism of ADP-ribose 1',2'-cyclic phosphate. Nucleic Acids Res 28, 1676-1683.
Ng, E. K., Ng, P. C., Hon, K. L., Cheng, W. T., Hung, E. C., Chan, K. C., Chiu, R. W., Li, A. M., Poon, L. L., Hui, D. S., et al. (2003). Serial analysis of the plasma concentration of SARS coronavirus RNA in pediatric patients with severe acute respiratory syndrome. Clin Chem 49, 2085-2088.
Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., et al. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319-1325.
Ritchie, K. J., Hahn, C. S., Kim, K. I., Yan, M., Rosario, D., Li, L., de la Torre, J. C., and Zhang, D. E. (2004). Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med 10, 1374-1378.
Roberts, L. O., Seamons, R. A., and Belsham, G. J. (1998). Recognition of picornavirus internal ribosome entry sites within cells; influence of cellular and viral proteins. Rna 4, 520-529.
Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Penaranda, S., Bankamp, B., Maher, K., Chen, M. H., et al. (2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394-1399.
Shull, N. P., Spinelli, S. L., and Phizicky, E. M. (2005). A highly specific phosphatase that acts on ADP-ribose 1'-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res 33, 650-660.
Snijder, E. J., Bredenbeek, P. J., Dobbe, J. C., Thiel, V., Ziebuhr, J., Poon, L. L., Guan, Y., Rozanov, M., Spaan, W. J., and Gorbalenya, A. E. (2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331, 991-1004.
Snijder, E. J., van Tol, H., Roos, N., and Pedersen, K. W. (2001). Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. J Gen Virol 82, 985-994.
Sulea, T., Lindner, H. A., Purisima, E. O., and Menard, R. (2005). Deubiquitination, a new function of the severe acute respiratory syndrome coronavirus papain-like protease? J Virol 79, 4550-4551.
Sutton, G., Fry, E., Carter, L., Sainsbury, S., Walter, T., Nettleship, J., Berrow, N., Owens, R., Gilbert, R., Davidson, A., et al. (2004). The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure (Camb) 12, 341-353.
Teng, H., Pinon, J. D., and Weiss, S. R. (1999). Expression of murine coronavirus recombinant papain-like proteinase: efficient cleavage is dependent on the lengths of both the substrate and the proteinase polypeptides. J Virol 73, 2658-2666.
Thiel, V., Herold, J., Schelle, B., and Siddell, S. G. (2001). Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol 82, 1273-1281.
Thiel, V., Ivanov, K. A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., et al. (2003). Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84, 2305-2315.
Tibbles, K. W., Brierley, I., Cavanagh, D., and Brown, T. D. (1996). Characterization in vitro of an autocatalytic processing activity associated with the predicted 3C-like proteinase domain of the coronavirus avian infectious bronchitis virus. J Virol 70, 1923-1930.
van der Hoek, L., Pyrc, K., Jebbink, M. F., Vermeulen-Oost, W., Berkhout, R. J., Wolthers, K. C., Wertheim-van Dillen, P. M., Kaandorp, J., Spaargaren, J., and Berkhout, B. (2004). Identification of a new human coronavirus. Nat Med 10, 368-373.
Wassenaar, A. L., Spaan, W. J., Gorbalenya, A. E., and Snijder, E. J. (1997). Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: evidence that NSP2 acts as a cofactor for the NSP4 serine protease. J Virol 71, 9313-9322.
Woo, P. C., Lau, S. K., Chu, C. M., Chan, K. H., Tsoi, H. W., Huang, Y., Wong, B. H., Poon, R. W., Cai, J. J., Luk, W. K., et al. (2005). Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79, 884-895.
Woolaway, K. E., Lazaridis, K., Belsham, G. J., Carter, M. J., and Roberts, L. O. (2001). The 5' untranslated region of Rhopalosiphum padi virus contains an internal ribosome entry site which functions efficiently in mammalian, plant, and insect translation systems. J Virol 75, 10244-10249.
Yount, B., Curtis, K. M., Fritz, E. A., Hensley, L. E., Jahrling, P. B., Prentice, E., Denison, M. R., Geisbert, T. W., and Baric, R. S. (2003). Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 100, 12995-13000.
Ziebuhr, J., Snijder, E. J., and Gorbalenya, A. E. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81, 853-879.
Ziebuhr, J., Thiel, V., and Gorbalenya, A. E. (2001). The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J Biol Chem 276, 33220-33232.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36171-
dc.description.abstractSARS-冠狀病毒(SARS-CoV)是造成2003年嚴重急性呼吸道症候群大規模流行的致病源,屬於冠狀病毒屬。冠狀病毒相較一般的RNA病毒,具有較長的基因序列,因此,冠狀病毒的複製以及基因調控的機制比起其他病毒,也顯得更為複雜。一般預期SARS病毒的基因表現,轉譯以及後轉譯調控也非常複雜,詳細的分子作用機轉,需要更進一步研究來加以闡明。來自於SARS-CoV polyprotein ORF1a 的蛋白酶PLpro 被預期會切割在ORF1a N端的三個切點上。ORF1a上另外一個蛋白酶3C-like (3CLpro)則負責作用在其他的11個切點。1a以及1ab經蛋白酶作用所產生的蛋白質產物,一般相信會組合形成依附在細胞內膜上形成replication complex,對SARS病毒的複製,病毒產物的產生,以及致病力扮演重要的角色。
我們利用in vitro以及in vivo酵素活性測定的實驗設計,來檢視蛋白酶PLpro 的活性。首先,將in vitro合成的SARS-CoV PLpro 以及預測具有酵素切點的蛋白質片段混合,來測試酵素的活性。在in vitro實驗中,我們發現PLpro蛋白酶展現出cis-cleavage的活性,但卻沒有trans-cleavage的活性。然而,相同的酵素片段,在in vivo的環境下卻展現出具有相當高的trans-cleavage活性。這樣的實驗結果顯示,某些細胞因子對於PLpro酵素的trans-cleavage活性,扮演著重要且關鍵的角色。此外,透過這次的研究,我們在酵素受質3(substrate 3)的片段,一段含nsp2/nsp3 PLpro 切點的蛋白質片段上,卻發現到一個性質未知的蛋白酶切點。相對於substrate 3所包含的PLpro 切點,這個性質未知的切點,在沒有PLpro 蛋白酶出現的條件下,仍然會被切割,顯示作用在該切點的酵素並非PLpro。我們利用serial deletion的實驗將切點所在位置的範圍,縮小到約莫SARS ORF1a 蛋白質的第950~960個氨基酸之間。這個新切點的酵素作用,不只出現在利用rabbit reticulocyte lysate所合成的蛋白質上,由wheat germ lysate所合成的蛋白質片段,也顯示出相同的結果。然而,如果將合成的蛋白質從lysate中純化出來,類似的酵素作用立刻消失。因此,我們認為,用來合成蛋白質的lysate當中,可能含有某些蛋白酶,可作用在這個新的蛋白酶切點上。
zh_TW
dc.description.abstractSARS-Coronavirus (SARS-CoV) is the causative agent of the epidemic of the severe acute respiratory syndrome (SARS) in 2003. Coronaviruses are the exceptionally large RNA viruses and employ complex regulatory mechanisms to replicate and express their genomes. Gene expression of SARS-CoV is believed to involve complicated transcriptional, translational and post-translational regulatory mechanisms, the molecular details of which, however, remain to be determined. The PLpro encoded in the SARS-CoV polyprotein ORF1a is predicted to process the N-terminal three sites of ORF1a and 1ab, whereas the 3C-like (3CL) protease is responsible for the cleavage of the rest sites. The products derived from 1a and 1ab are believed to assemble into a membrane-associated viral replication complex, facilitating the replication and downstream viral biogenesis as well as pathogenesis.
In this study, we determined the enzyme activity of SARS-CoV PLpro by in vitro and in vivo assay systems. When incubating the in vitro synthesized SARS-CoV PLpro with its predicted substrates, the enzyme exhibited cis-cleavage activity but no detectable trans-cleavage activity in vitro. However, the same enzymatic domain trans-cleaved the substrates efficiently in vivo. The results suggest that some cellular factors of human cells may be important and necessary for the trans-cleavage activity of PLpro. Here, we also identified a cryptic cleavage site within substrate 3, a fragment that contained the predicted nsp2/nsp3 cleavage site for PLpro. The cryptic site was cleaved even in the absence of PLpro, suggesting that it was not a substrate site for PLpro. Serial deletion analysis further established that the cryptic site was around residues 950~960 of SARS-CoV ORF1a. The cryptic processing of substrate 3 was observed not only when the protein was synthesized in rabbit reticulocyte lysate, but also when it was synthesized in wheat germ lysate. However, the cryptic processing was no longer observed when the synthesized substrate 3 was purified from the lysate. Therefore, we concluded that the proteases from the lysate may mediate this cleavage phenomenon.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:52:56Z (GMT). No. of bitstreams: 1
ntu-94-R92445120-1.pdf: 2072426 bytes, checksum: 1af6736ca7ac5cbb9b7d66c79a549a3c (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 …………………………………………………………… I
英文摘要 …………………………………………………………… III
序論 ………………………………………………………………… 1
1.嚴重急性呼吸道症候群(SARS)之歷史 ……………………… 1
2.SARS冠狀病毒之基因體結構及種源(phylogenic)分類 …… 2
3. SARS冠狀病毒之複合蛋白質(polyprotein)及其複製 ……… 4
4. SARS病毒蛋白酶的重要性以及其藥理學上的含意 ……… 5
5. 本實驗的目的 …………………………………………………7
材料與方法 ………………………………………………………… 8
1.病毒,細胞與抗體 …………………………………………… 8
2. SARS PLpro基因片段與受質(substrates) 片段之質體構築… 9
3. 點突變 ……………………………………………………… 10
4. 試管內 (in vitro) 轉錄及轉譯所進行之trans-cleavage 分析…10
5. 利用痘病毒系統在HeLa細胞內(in vivo) 所進行之trans-cleavage 分析 …………………………………………………… 11
6. 利用痘病毒系統在293T細胞內表現酵素受質進行cleavage活性析 ………………………………………………………………12
7. 放射性免疫沈澱分析 ………………………………………… 12
8. 表現並純化His-標記之酵素受質3 ………………………… 13
結果 ………………………………………………………………… 15
1. 分析SARS-CoV 之PLpro 在試管中之cis-cleavage 活性… 15
2. 分析SARS-CoV 之PLpro 在試管中之trans-cleavage 活性 16
3. 分析SARS-CoV 之 PLpro 在細胞內之trans-cleavage 活性 19
4. 檢驗nsp 3 蛋白內異常切割的可能機制 …………………… 22
5. 利用系列刪除法來決定未知蛋白酶的切割點 …………… 23
6. 在不同表達系統中所合成之蛋白質依舊具有未知蛋白酶切割的現象 …………………………………………………………… 25
7. 純化過之合成受質3不再具有未知蛋白酶切割的情形 … 28
討論 ……………………………………………………………… 30
1.SARS-CoV 的 PLpro ……………………………………… 30
2.未知蛋白酶切割點的研究 ………………………………… 34
未來實驗方向與展望 …………………………………………… 37
參考文獻 ……………………………………………………… 38
圖與表 …………………………………………………………… 45
dc.language.isozh-TW
dc.titleSARS冠狀病毒之PLpro蛋白酶之特性分析zh_TW
dc.titleCharacterization of Papain-like Protease of SARS-Coronavirusen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳培哲,董馨蓮,葉秀慧
dc.subject.keyword冠狀病毒,蛋白&#37238,zh_TW
dc.subject.keywordpapain-like protease,coronavirus,SARS,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2005-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
2.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved