請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36164完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林立德(Leader Lin) | |
| dc.contributor.author | Yu-Shu Lin | en |
| dc.contributor.author | 林于淑 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:52:46Z | - |
| dc.date.available | 2005-08-04 | |
| dc.date.copyright | 2005-08-04 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-25 | |
| dc.identifier.citation | 1. Aboyoussef H, Weiner S, Ehrenberg D. Effect of an Antirotation Resistance Form on Screw Loosening for Single Implant-Supported Crowns. J Prosthet Dent 2000;83:450-5
2. Akça K, Çehreli MC, Ìplikçioglu H. A Comparison of Three-Dimensional Finite Element Stress Analysis with in Vitro Strain Gauge Measurements on Dental Implants. Int J Prosthodont 2002;15:115-121 3. Bickford B. An Introduction to the Design and Behavior of Bolted Joints. Marcel Dekker;1981:527-564 4. Binon PP. The Effect of Implant / Abutment Hexagonal Misfit on Screw Joint Stability. Int J Prosthodont 1996a;9:149-160 5. Binon PP. The Effect of Eliminating Implant / Abutment Rotational Misfit on Screw Joint Stability. Int J Prosthodont 1996b;9:511-519 6. Brosh T, Pilo R, Sudai D. The Influence of Abutment Angulation on Strains and Stresses along the Implant / Bone Interface: Comparison between two Experimental techniques. J Prosthet Dent 1998;79:328-334 7. Burguete RL, Johns RB, King T, Patterson EA. Tightening Characteristics for Screwed Joints in Osseointegrated Dental Implants. J Prosthet Dent 1994;71:592-599 8. Cehreli M, Duyck J, Cooman MD, Puers R, Naert I. Implant Design and Interface Force Transfer – A Photoelastic and Strain-Gauge Analysis. Clin Oral Impl Res 2004;15:249-257 9. Clelland NL, Gilat A, McGlumphy EA, Brantley WA. A Photoelastic and Strain Gauge Analysis of Angled Abutments for an Implant System. Int J Oral Maxillofac Implants 1993;8:541-548 10. Dixon DL, Breeding LC, Sadler JP, McKay ML. Comparison of Screw Loosening, Rotation, and Deflection among Three Implant Designs. J Prosthet Dent 1995;74:270-278 11. Duyck J, Rønold HJ, Oosterwyck HV, Naert I, Sloten JV, Ellingsen JE. The Influence of Static and Dynamic Loading on Marginal Bone Reactions around Osseointegrated Implants: An Animal Experimental Study. Clin Oral Impl Res 2001;12:207-218 12. Frost HM. Skeletal Structural Adaptations to Mechanical Usage ( SATMU ): 1. Redefining Wolff’s Law: The Bone Modeling Problem; The Anatomical Record 1990;226:403-413 13. Gratton DG, Aquilino SA, Stanford CM. Micromotion and Dynamic Fatigue Properties of the Dental Implant-Abutment Interface. J Prosthet Dent 2001;85:47-52 14. Hassler CR, Rybicki EF, Cummings KD, Clark LC: Quantification of Bone Stresses during Remodeling. Journal Biomechanics 1980;13:185-190 15. Haack JE, Sakaguchim RL, Sun T, Coffey JP. Elongation and Preload Stress in Dental Implant Abutment Screws. Int J Oral Maxillofac Implants 1995;10:529-536 16. iplikçioglu H, Akça K, Çehreli MC, Sahin S. Comparison of Non-linear Finite Element Stress Analysis with in Vitro Strain Gauge Measurements on a Morse Taper Implant. Int J Oral Maxillofac Implants 2003;18:258-265 17. Ivanoff CJ, Sennerby L, Lekholm U. Reintegration of Mobilized Titanium Implants. An Experimental Study in Rabbit Tibia. Int J Oral Maxillofac Surg 1997;26:310-315 18. Jemt T. Failures and Complications in 391 Consecutively Inserted Fixed Prostheses Supported by Brånemark Implants in Edentulous Jaws: A Study of Treatment from the Time of Prosthesis Placement to the First Annual Checkup. Int J Oral Maxillofac Implants 1991;6:270-276 19. Lang LA, May KB, Wang RF. The Effect of the Use of a Counter-Torque Device on the Abutment-Implant Complex. J Prosthet Dent 1999;81:411-417 20. Lang LA, Wang RF, and Kenneth. The Influence of Abutment Screw Tightening on Screw Joint Configuration. J Prosthet Dent 2002;87:74-79 21. Levine RA, Clem III DS, Wilson Jr TG, Higginbottom F, Saunders SL. A Multicenter Retrospective Analysis of the the ITI Implant System Used for Single-Tooth Replacements: Preliminary Results at 6 or More Months of Loading. Int J Oral Maxillofac Implants 1997;12:237-242 22. Levine RA, Clem III DS, Wilson Jr TG, Higginbottom F, Solnit G. Multicenter Retrospective Analysis of the the ITI Implant System Used for Single-Tooth Replacement: Results of Loading for 2 or More Years. Int J Oral Maxillofac Implants 1999;14:516-520 23. Lindquist LW, Rockler B, Carlsson GE. Bone Resorption around Fixture in Edentulous Patients Treated with Mandibular Fixed Tissue-Integrated Prosthesis. J Prosthet Dent 1988;59:59-63 24. Martin RB, Burr DB. Structure, Function, and Adaptation of Compact Bone. New York: Raven Press;1989:143-185 25. McGlumphy EA, Mendel DA, Holloway JA. Implant Screw Mechanics. Dent Clin North Am 1998;42:71-89 26. Melsen B, Lang NP. Biological Reactions of Alveolar Bone to Orthodontic Loading of Oral Implants. Clin Oral Impl Res 2001;12:144-152 27. Merz BR, Hunenbart S, Belser UC. Mechanics of the Implant-Abutment Connection: An 8-Degree Taper Compared to a Butt Joint Connection. Int J Oral Maxillofac Implants 2000;15:519-526 28. Mohammed A. Al Rafee, Nagy WW, Fournelle RA, Dhuru VB, Tzenakis GK, Pechous CE. The Effect of Repeated Torque on the Ultimate Tensile Strength of Slotted Gold Prosthetic Screws. J Prosthet Dent 2002;88:176-182 29. Naert I, Quirynen M, van Steenberghe D, Darius P. A Six Year Prosthodontic Study of 509 Consecutively Inserted Implants for the Treatment of Partial Edentulism. J Prosthet Dent 1992a;67:236-245 30. Naert I, Quirynen M, van Steenberghe D. A Study of 589 Consecutive Implants Supporting Complete Fixed Prostheses. Part II: Prosthetic Aspects. J Prosthet Dent 1992b;68:949-956 31. Patterson EA, Johns RB. Theoretical Analysis of the Fatigue Life of Fixture Screws in Osseointegrated Dental Implants. Int J Oral Maxillofac Implants 1992;7:26-34 32. Rangert B, Jemt T, Jörneus L. Forces and Moments on Brånemark Implants. Int J Oral Maxillofac Implants 1989;4:241-247 33. Sakaguchi RL, Borgersen SE. Nonlinear Finite Element Contact Analysis of Dental Implant Components. Int J Oral Maxillofac Implants 1993;8:655-661 34. Sakaguchi RL, Borgersen SE. Nonlinear Contact Analysis of Preload in Dental Implant Screws. Int J Oral Maxillofac Implants 1995;10:295-302 35. Sones AD. Complications with Osseointegrated Implants. J Prosthet Dent 1989;62:581-585 36. Sutter F, Weber HP, Sorensen J, Belser U. The New Restorative Concept of the ITI Dental Implant System: Design and Engineering. Int J Perio & Resto Dent 1993;13(5):408-431 37. Zarb GA, Schmitt A. The Longitudinal Clinical Effectiveness of Osseointegrated Dental Implants: The Toronto Study. Part III: Problems and Complications Encountered. J Prosthet Dent 1990;64:185-194 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36164 | - |
| dc.description.abstract | 施加於植體支台螺釘的預載力可以在植體與支台之間形成鉗夾力,避免螺絲的過早鬆動來達到穩定植體與支台間關節的效果,但卻也可能會造成植體的變形,或將過多的應變傳導至植體-骨頭界面而影響到骨整合。本實驗的目的是為了解旋緊支台螺釘過程中,支台之抗旋轉設計有無,或抗扭力裝置的使用與否於植體-骨頭界面之扭力的影響,以及在植體-支台界面產生之鉗夾力對於植體應變的影響。
本研究分成三個部分:第一部分:旋緊支台螺釘時,支台是否具有抗旋轉設計或有無使用抗扭力裝置,在植體-骨頭界面處扭力的影響;第二部分:以植體類比體為測試對象,旋緊支台螺釘時,支台是否具有抗旋轉設計或是有無使用抗扭力裝置所產生之植體-支台界面鉗夾力對於植體應變的影響;第三部分:以植體為測試對象,鎖緊支台螺釘時,支台是否具有抗旋轉設計或是有無使用抗扭力裝置所產生之植體-支台界面鉗夾力對於植體應變的影響。 第一部分的研究是將一5 mm之植體類比體( Brånemark system )固定於扭力測量器上,測試的植體支台共有兩種:具抗旋轉設計的MirusCone abutment ( MC )及不具抗旋轉設計的Multiunit abutment ( MU )。以扭力控制器施加20 Ncm的扭力旋緊支台螺釘,並配合抗扭力裝置的使用有無( wct, woct ),共計四種測試組合:MC+woct, MC+wct, MU+woct, MU+wct,每種測試組合各測試五次,紀錄扭力測量器所得到的數值。 第二部分研究中,是將一具有三組電極線圈的應變計貼於直徑為5 mm之植體類比體上,應變計電極線圈中心點距離植體-支台界面約1.5 mm,令其中一組電極線圈( SG 1 )與待測物之長軸平行。接著將貼好應變計的植體類比體以環氧樹脂包埋。一共建立了五組模型,共計四種測試組合( MC+woct, MC+wct, MU+woct, MU+wct )、每種測試組合各測試五次。 第三部分的研究是架設三組直徑為4 mm、高度為10 mm之植體,重複上述實驗步驟。利用Spike 2軟體紀錄分析測得的數據,再依照應變計原理,算出maximum principle strain及minimum principle strain (Єp,q )及其與SG 1(即待測物長軸方向)所夾的角度(øp,q )。 20 Ncm的預載力且併用抗扭力裝置的情況下,扭力測量器紀錄的扭力數值約減少了90 %左右。應變計數據顯示,SG 1量測到的數值往往是最高的、且大小與maximum principle strain ( MPS )相近,由此可知施加於支台螺釘上的預載力,的確會造成近乎平行待測物的應變。另外在一前驅實驗中,分別以20 Ncm及32 Ncm的扭力旋緊Multiunit abutment的支台螺釘時,發現當以較大的預載力旋緊支台螺釘時,會在植體-骨頭界面產生較大的應變,而且與待測物長軸所夾的角度(順時鐘方向)也越大。植體類比體及植體皆得到下述結果:以各個測試組合的MPS平均值來看,MC+woct大於MU+woct、MC+wct大於MU+wct(植體類比體之應變值:MC+woct = -242.48±14.65 μє, MC+wct = -231.71±27.72 μє , MU+woct = -215.95±17.79 μє , MU+wct = -221.00±7.59 μє;植體之應變值:MC+woct = -976.76±172.16 μє, MC+wct = -868.09±207.38 μє , MU+woct = -919.49±147.17 μє , MU+wct = -839.72±101.40 μє )。抗扭力裝置的使用與否並沒有統計學上的差異,支台之抗旋轉設計的影響則不明顯。施加預載力於支台螺釘上會產生近乎平行待測物長軸的應變,而未來的研究方向著重在施力過程中動態分析。 | zh_TW |
| dc.description.abstract | Applying a force onto abutment screws within its preloading limit can induce a clamping force between the implant-abutment interfaces and can prevent screws from loosening, thereby reaching a more stable implant-abutment joint. However, overload or overstrain may cause implant deformation which may induce excessive strains around peri-implant bones and affect osseointegra-tion. The purpose of the study was to evaluate whether the use of an antirotational design at implant-abutment interface and the application of a counter-torque device could affect the development of peri-implant bone strain with a preloading force onto the abutment screws.
Three parts of experiment were included in the study. The first part focused on the effect of the antirotational design of the abutments and the counter-torque device to the implant-bone interface when tightening the abutment screws. The second part is done to clarify the effect the clamping force between the implant-abutment interface caused by tightening the abutment screw to the implant-bone interface. The implant replica was chosen for testing. The effect of the antirotational design of the abutments and the counter-torque device were also discussed. In the third part of the experiment, the implant replica was replaced with implant for testing. In the first part of the experiment, a 5 mm diameter implant replica of Brånemark system was fixated onto a torque gauge. There were two types of implant abutment designs chosen for testing: an anti-rotary based MirusCone abutment (MC) design and a rotary, or without anti-rotary, based Multiunit abutment (MU) design. An abutment screw was placed and tightening the screw with an electronic torque controller with 20 Ncm torque. The preloads were also conducted under the conditions of with and without the use of counter-torque device (wct and woct respectively). Therefore, the measure-ments were done under four different combinations: MC+woct, MC+wct, MU+woct, MU+wct. Each of these combinations was repeated five times and the torque transmitted to implant surface were recorded by the torque gauge. In the second part of the experiment, a snacked delta rosette strain gauge was bonded on a 5 mm of diameter implant replica of Brånemark system. The strain gauge was bonded at approximately 1.5 mm away from the implant-abutment junction with one strain gauge ( SG 1 ) parallel to the longitudinal axis of the replica. Then the replica assembly was embedded in an epoxy resin block. Five models were set up and the four measurement combinations: MC+woct, MC+wct, MU+woct, MU+wct were tested 5 times for each measurement condition accuracy and precision. In the third part of the experiment, three models of implant fixture of 4mm in diameter and 10mm in height were constructed and the tests were repeated. Spike2 software was used to analyze the results of the second and third parts of the experiment. The maximum and minimum principle strains (Єp,q ) as well as the angle (øp,q ) between strains and the longitudinal axis of the implant/replica were calculated with the formulas provided by the manufacture. Under the condition of the 20 Ncm torque applied with counter-torque device, the torque transmitted to the replica surface recorded by the torque gauge was lessened about 90 % in comparison with the condition without counter-torque device. According to the strain gauge data, the value of the SG 1 was highest and almost equal to maximum principle strain (MPS). According to a preliminary study, a Multiunit abutment was tightened with 20 Ncm and 32 Ncm torque forces. From the results, there was a direct correlation between the strength preloaded upon the abutment screw and the strain value imposed onto the object under test. The larger the preload, the higher the reaction observed between the peri-implant and the bone and the wider the longitudinal axis of the device under test (clockwise direction). Both the replica and fixture models showed that MC+woct had greater change than MU+woct, and MC+wct had greater change than MU+wct ( in replica group: MC+woct = -242.48±14.65 μє, MC+wct = -231.71±27.72 μє , MU+woct = -215.95±17.79 μє , MU+wct = -221.00±7.59 μє ; in implant group: MC+woct = -976.76±172.16 μє, MC+wct = -868.09±207.38 μє , MU+woct = -919.49± 147.17 μє , MU+wct = -839.72±101.40 μє ). The use of counter-torque device did not statistically affect the strain value. More, the different results from the antirotational designs of the abutment were insignificant. The data showed that preloading the abutment screw may directly induce peri-implant bone strain towards the direction along the longitudinal axis of the implant replica and fixture. Future research will focus in the area of dynamically changing the force of preload affecting the result. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:52:46Z (GMT). No. of bitstreams: 1 ntu-94-R91422018-1.pdf: 1331208 bytes, checksum: b24079172cbee4799273c5a97763c53c (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 英文摘要 1
中文摘要 4 前言 7 文獻回顧 8 研究目的與動機 12 材料與方法 13 第一部分:旋緊支台螺釘時,支台是否具有抗旋轉設計或是有無使用抗扭力裝置在植體-骨頭界面處之扭力的影響 13 第二部分:以植體類比體為測試對象,旋緊支台螺釘時,支台是否具有抗旋轉設計或是有無使用抗扭力裝置所產生之植體-支台界面鉗夾力對於植體應變的影響 14 第三部分:以植體為測試對象,鎖緊支台螺釘時,支台是否具有抗旋轉設計或是有無使用抗扭力裝置所產生之植體-支台界面之鉗夾力對於植體應變的影響 17 結果 20 討論 24 結論 30 附圖 31 附表 49 參考文獻 53 附圖 圖一、扭力測量器( torque gauge ) 之側面觀 31 圖二、扭力測量器( torque gauge ) 之正面觀 31 圖三、Brånemark system系統中,高度皆為3 mm 之舊型具抗旋轉設計之MirusCone abutment(右)、新型不具抗旋轉設計的Multiunit abutment(左)及直徑為5mm之植體類比體(下) 32 圖四、扭力控制器( torque controller ) 32 圖五、抗扭力裝置( counter-torque device ) 33 圖六、應變計( rosette type, WA-06-030WY-120 strain gauge ) 33 圖七、將襯底切割好的WA-06-030WY-120應變計黏貼於直徑為5 mm之植體類比體上,其中平行植體類比體長軸的電極線圈命名為SG 1,剩餘兩組之電極線圈依逆時鐘方向依序命名為SG 2及SG 3 34 圖八、貼好應變計的植體類比體包埋在環氧樹脂中,最後利用Silky-Rock die stone將樹脂塊固定並懸空,完成測試用的模型 34 圖十、Brånemark system系統,直徑為4 mm、高度為10 mm之植體 36 圖十一、Brånemark system系統,直徑為4 mm、高度為10 mm之植體上端之外六角設計 36 圖十二、利用環氧樹脂將植體螺紋間的空隙補滿,藉由樹脂讓植體表面變成一個光滑平面 37 圖十三、將襯底切割好的WA-06-030WY-120應變計黏貼於直徑為4 mm、高度為10 mm之植體上,其中平行植體長軸的電極線圈命名為SG 1,剩餘兩組之電極線圈依逆時鐘方向依序命名為SG 2及SG 3 37 圖十四、五組植體類比體模型的四種測試組合之應變平均值(單位:μє ) 38 圖十五、五組植體類比體模型的應變平均值(單位:μє ) 38 圖十六、五組植體類比體模型的四種測試組合之角度平均值(單位:∘) 39 圖十七、五組植體類比體模型之角度平均值(單位:∘) 39 圖十八、三組植體模型的四種測試組合之應變平均值(單位:μє ) 40 圖十九、三組植體模型的應變平均值(單位:μє ) 40 圖二十、第一組植體類比體中,鎖緊MirusCone abutment支台螺釘過程中,各個應變值及MPS與植體類比體長軸之角度的變化 41 圖二十一、第一組植體類比體中,鎖緊MirusCone abutment支台螺釘且併用抗扭力裝置過程中,各個應變值及MPS與植體類比體長軸之角度的變化 42 圖二十二、第一組植體類比體中,鎖緊Multiunit abutment支台螺釘過程中,各個應變值及MPS與植體類比體長軸之角度的變化 43 圖二十三、第一組植體類比體中,鎖緊Multiunit abutment支台螺釘且併用抗扭力裝置過程中,各個應變值及MPS與植體類比體長軸之角度的變化 44 圖二十四、第一組植體中,鎖緊MirusCone abutment支台螺釘過程中,各個應變值及MPS與植體長軸之角度的變化 45 圖二十五、第一組植體中,鎖緊MirusCone abutment支台螺釘且併用抗扭力裝置過程中,各個應變值及MPS與植體長軸之角度的變化 46 圖二十六、第一組植體中,鎖緊Multiunit abutment支台螺釘過程中,各個應變值及MPS與植體長軸之角度的變化 47 圖二十七、第一組植體中,鎖緊Multiunit abutment支台螺釘且併用抗扭力裝置過程中,各個應變值及MPS與植體長軸之角度的變化 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 植體 | zh_TW |
| dc.subject | 預載力 | zh_TW |
| dc.subject | 應力 | zh_TW |
| dc.subject | 抗旋轉 | zh_TW |
| dc.subject | 抗扭力裝置 | zh_TW |
| dc.subject | antirotation | en |
| dc.subject | preload | en |
| dc.subject | implant | en |
| dc.subject | counter-torque device | en |
| dc.subject | strain | en |
| dc.title | 植體支台之抗旋轉設計及抗扭力裝置於預載力施與過程後對於植體周圍應變的影響 | zh_TW |
| dc.title | The Effect of Applying Antirotational Abutment Design and Counter-Torque Device on Peri-implant Bone after Preload | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王若松(Luo-Sung Wang),許明倫(Ming-Luen Shiu) | |
| dc.subject.keyword | 植體,預載力,應力,抗旋轉,抗扭力裝置, | zh_TW |
| dc.subject.keyword | implant,preload,strain,antirotation,counter-torque device, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
