Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36149
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭
dc.contributor.authorJen-Feng Lien
dc.contributor.author李任峰zh_TW
dc.date.accessioned2021-06-13T07:52:25Z-
dc.date.available2005-07-28
dc.date.copyright2005-07-28
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citation[1] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, In Proceedings of ACM-SIGMOD, 1993, pp. 207-216.
[2] R. Agrawal and R. Srikant, Fast algorithms for mining association rules, In Proc. of Int. Conf. Very Large Data Bases (VLDB’94), Santiago, Chile, Sept. 1994, pp. 487-499.
[3] R. Agrawal and R. Srikant, Mining sequential patterns, In Proc. of Int. Conf. Data Engineering (ICDE’95), Taipei, Taiwan, Mar. 1995, pp. 3-14.
[4] J. Ayres, J. E. Gehrke, T. Yiu, and J. Flannick, Sequential pattern mining using bitmaps, In Proc. of ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD’02), Edmonton, Canada, July 2002.
[5] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu, Freespan: frequent pattern-projected sequential pattern mining, In Proc. of Int. Conf. Knowledge Discovery and Data Mining (KDD’00), Boston, MA, August 2000, pp. 355-359.
[6] J. Han, J. Pei, and Y. Yin, Mining frequent patterns without candidate generation, In Proc. of ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’00), Dallas, TX, May 2000, pp. 1-12.
[7] M. Leleu, C. Rigotti, J.-F. Boulicaut, and G. Euvrard, GO-SPADE: mining sequential patterns over datasets with consecutive repetitions, In Proc. of Int. Conf. Machine Learning and Data Mining (MLDM’03), Leipzig, Germany, July 2003, pp. 293-306.
[8] F. Masseglia, F. Cathala, and P. Poncelet, The psp approach for mining sequential patterns, In Proc. of 1998 European Symp. Principle of Data Mining and Knowledge Discovery (PKDD’98), Nantes, France, September 1998, pp. 176-184.
[9] H. Mannila, H. Toivonen, and A. I. Verkamo, Discovery of frequent episodes in event sequences, Data mining and Knowledge Discovery, vol. 1, no. 3, 1997, pp. 259-289.
[10] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Discovering frequent closed itemsets for association rules, In Proc. of 7th Int. Conf. Database Theory (ICDT’99), Jerusalem, Israel, January 1999, pp. 398-416.
[11] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu, PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth, In Proc. of 2001 Int. Conf. Data Engineering (ICDE’01), Heidelberg, Germany, April 2001, pp. 215-224.
[12] R. Srikant and R. Agrawal, Mining sequential patterns: generalizations and performance improvements, In Proc. of 1996 Int. Conf. Extending Database Technology (EDBT’96), Avignon, France, Mar 1996.
[13] E. Ukkonen, On-line construction of suffix trees, Algorithmica, vol. 14, no. 13, 1995, pp. 249-260.
[14] J. Wang, J. Han, BIDE: efficient mining of closed sequences, In Proc. of 2004 Int. Conf. Data Engineering (ICDE’04), Boston, Massachusetts, April 2004, pp. 79-90.
[15] J. Wang, J. Han, and J. Pei, CLOSET+: searching for the best strategies for mining frequent closed itemsets, In Proc. Int. of Conf. Knowledge Discovery and Data Mining (KDD’03), Washington, DC, August 2003, pp. 236-245.
[16] X. Yan, J. Han, and R. Afshar, CloSpan: mining closed sequential patterns in large databases, In Proc. of 2003 SIAM Int. Conf. Data Mining (SDM’03), San Francisco, CA, May 2003.
[17] M. J. Zaki, SPADE: an efficient algorithm for mining frequent sequences, Machine Learning, Vol. 1, No. 1~2, 2001, pp. 31-60.
[18] M. Zaki, and C. Hsiao, CHARM: an efficient algorithm for closed itemset mining, In Proc. of SIAM Int. Conf. Data Mining (SDM’02), Arlington, VA, April 2002, pp. 457-473.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36149-
dc.description.abstractDiscovering association rules can reveal the cause-effect relationships among events in a time-series database. The problem can be transformed to finding frequent sequential patterns. However, most of sequential pattern mining algorithms proposed are not suitable to mine frequent patterns in a time-series database since they are not efficient to mine frequent patterns for long sequences and a time-series database usually contains long sequences. Moreover, they do not consider the distance between the frequent patterns. Thus, in this thesis, we propose an efficient algorithm to mine frequent patterns in time-series database.
Our proposed algorithm, CP-Miner, consists of three phases. First of all, we transform every real value number in a time-series sequence into a symbolic level so that every time-series sequence can be considered as a string. Then we employ a suffix tree to store the whole database thus we can easily find the frequent strings by traversing the suffix tree. Finally, we can combine these frequent strings to generate longer frequent patterns by traversing the suffix tree. It is shown that the CP-Miner algorithm outperforms the Apriori-like algorithm in terms of runtime and space requirement.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:52:25Z (GMT). No. of bitstreams: 1
ntu-94-R92725037-1.pdf: 401385 bytes, checksum: 412400b65db9020b031eed74f05be3d0 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents i
List of Figures ii
List of Tables iii
Chapter 1 Introduction 1
Chapter 2 Literature Survey 3
2.1 AprioriAll Algorithm 3
2.2 PrefixSpan 5
2.3 Discussion 7
Chapter 3 Mining Association Rules in Time-series Databases 9
3.1 Problem Definition and Notations 9
3.2 Suffix Tree 10
3.3 Our Proposed Method 12
3.3.1 Quantization phase 12
3.3.2 Discovering phase 12
3.3.3 Combination phase 15
Chapter 4 Performance Evaluation and Experimental Results 28
4.1 Synthetic Data 28
4.2 Real Data 31
Chapter 5 Conclusions and Future Work 35
References 36
dc.language.isoen
dc.title在時間序列資料庫中探勘關聯性規則zh_TW
dc.titleMining Association Rules in Time-series Databasesen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉敦仁,沈錳坤
dc.subject.keyword資料探勘,關聯性規則,時間序列資料庫,字尾樹,zh_TW
dc.subject.keyworddata mining,association rules,time-series databases,suffix tree,en
dc.relation.page37
dc.rights.note有償授權
dc.date.accepted2005-07-25
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
391.98 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved