Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36133
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬
dc.contributor.authorKun-Yen Leeen
dc.contributor.author李昆諺zh_TW
dc.date.accessioned2021-06-13T07:52:04Z-
dc.date.available2006-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citation1. 宋致祥,“SPR光學感測技術之橫向傳播理論於生醫感測器檢測之研究”, 國立台灣大學醫學工程學研究所碩士論文, 民93
2. R.H. Ritchie, “Plasma losses by fast electrons in thin films”, Physical Review. 106 (1957) 874-881.
3. C.J. Powell and J.B. Swan, ”Origin of the characteristic electron energy losses in aluminum”, Physical Review. 115,(1959) 869-875.
4. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection”, Z. Physik, 216:398-410, 1968.
5. S. G. Nelson, K. S. Johnston and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection”, Sensors and Actuators B 35-36 (1996) 187-191.
6. J. Dostálek, “Analysis and characterization of an optical system of a dual-channel optical sensor based on resonant excitation of surface plasmons”, Diploma thesis, Institute of Radio Engineering and Electronics, Academy of Sciences of the Czech Republic, 2000.
7. A.V. Kabashin, P.I. Nikitin, “Surface plasmon resonance interferometer for bio and chemical sensors”, Optics Communications. 150 (1998) 5-8.
8. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch 23A (1968) 2135-2136.
9. D. Sarid, “Long-Range Surface-Plasmon Waves on Very Thin Metal Films”, Phys. Rev. Lett. 47(1981)1927-1930.
10. W.M. Gibbons and D. Sarid, “Effect of carrier diffusion on the nonlinear response of optical waveguides”, Optics letters. Vol. 12, No. 8, 1987.
11. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum”, Phil. Mag. Ser. 6, 4:396–402 (1902).
12. J. Zenneck, “On the propagation of plane electromagnetic waves along a flat conductor and its application to wireless telegraphy”, Ann. Physik. 23 (1907) 846.
13. A. Sommerfeld, “Propagation of Waves in Wireless Telegraphy”, Ann. Physik 28 (1909) 665.
14. G. Goubau, “Surface Waves and Their Application to Transmission Lines“, J. Appl. Phys. 21, (1950) 1119.
15. R. J. Bell, R. W. Alexander, Jr., W. F. Parks, G. Kovener and I. L. Tyler, “Surface excitations in absorbing media”, Optics Communications 8, 147 (1973).
16. R. W. Alexander, R. J. Bell, C. A. Ward, J. H. Weaver, I. L. Tyler, and B. Fischer “Possible applications of surface electromagnetic waves to measure absorption coefficients”, J. Chem. Phys. 59 (1973) 3492.
17. C. A. Ward, R. J. Bell, R. W. Alexander and G. Kovener, “Surface Electromagnetic Waves on Metals and Polar Insulators: Some Comments”, Appl. Opt. 13 (1974) 2378.
18. J. Schoenwald, E. Burstein and J. M. Elson, ”Propagation of surface polaritons over macroscopic distances at optical frequencies”, Solid State Communication 12 (1973) 185.
19. D. L. Begley, D. A. Bryan R. W. Alexander and R. J. Bell, “Optimization of prism coupling efficiency for surface electromagnetic wave excitation in the infrared”, Appl. Optics. 16 (1977) 1549-1552.
20. G. N. Zhizhin, M. A. Moskalova, E. V. Shomina and V. A. Yakovlev, “Selective absorption of a surface electromagnetic wave propagating on a metal in the presence of a thin dielectric film “, JETP Lett. 24 (1976) 196.
21. Y. J. Chabal and A. J. Silvers, “Surface electromagnetic wave launching at the edge of a metal film “, Appl. Phys. Letters 32(2) (1978) 90.
22. V. M. Agranovich, 'Crystal optics of surface polaritons and the properties of surfaces', Usp. Fiz. Nauk 15, (1975) 199-237. [Sov. Phys. Usp. 18, (1975) 99-117]
23. G. N. Zhizhin, M. A. Moskalova, E. V. Shomina and V. A. Yakovlev, “Optical constants of copper deduced from propagation of surface electromagnetic waves “, Fiz. Tverd. Tela. 21 (1979b) 2828. [Sov. Phys. Solid State, 21, (1979) 1630]
24. S. B. Mendes, L. Li, J. Burke and S. S. Saavedra, “Achromatic prism-coupler for planar waveguide”, Optics Communications 136 (1997) 320-326.
25. E. V. Alieva, G. Beitel, L. A. Kuzik, A. A. Sigarev, V. A. Yakovlev, G. N. Zhizhin, A. F. G. van der Meer and M. J. van der Wiel, “Linear and nonlinear FEL-SEW spectroscopic characterization of nanometer-thick films”, Journal of Molecular Structure 449 (1998) 119–129.
26. 李政隆,“掺鍺二氧化矽光波導表面電漿共振生物感測晶片之研發”, 國立台灣大學醫學工程學研究所碩士論文, 民93
27. C.R. Lavers, J.S. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment”, Sensors and Actuators B 22(1994) 75-81.
28. M. Pluta, Advanced Light Microscopy Vol.1, Elsevier (1988).
29. F. M. Mirabella, Internal reflection spectroscopy : theory and applications, New York : Marcel Dekker (1993).
30. S. Evans, Department of Physics and Astronomy University of Leeds, “Surface Plasmon Polaritons”, http://mpi.leeds.ac.uk/teaching/SIA/lect4.pdf
31. J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review”, Sensors and Actuators B 54 (1999) 3–15.
32. Fuzi Yang, J. R. Sambles and G. W. Bradberry, “Long-range surface modes supported by thin films”, Physical Review B 44, 5855(1991).
33. R. J. Crook, Fuzi Yang and J. R. Sambles, “Long-range optical modes supported by a strongly absorbing thin organic film”, Opt. Soc. Am. B 10,NO.2(1993).
34. 台大奈米機電系統研究中心http://nems.ntu.edu.tw/
35. 台大奈米科技研究中心http://nanost.ntu.edu.tw/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36133-
dc.description.abstract表面電漿共振(Surface plasmon resonance, SPR)現象應用於光學檢測已有數十年,在一般所使用的角度調變量測方法中,所使用之金膜厚度為50nm,在可見光範圍內,SPR曲線圖半高寬約為4°~6°,半高寬愈大代表檢測愈不靈敏,因此仍有將半高寬縮小、敏感度提高的改善空間。傳統的研究均以表面電漿波在垂直介面方向上的感測為主,而其垂直方向的穿透深度大約在100nm~200nm的範圍,能變動的範圍不大,對其感測的範圍有了限制,只有在這100nm~200nm深度的分子才能被感測,然而在表面電漿波平行介面方向上的傳播,其傳播長度可達到數十至數百個um等級,可大幅提升感測範圍,因而延伸出本研究以對稱介電質膜層結構設計(Long-range SPR)來改善檢測之敏感度並配合波導耦合方式研究側向表面電漿波的傳播行為及其傳播長度。
經本研究實驗結果,證實對稱介電質膜層結構設計確實能幫助表面電漿波的耦合,依待測物的不同選擇適當之介電質層,配合金膜厚度的控制可使欲感測之樣本有最佳的敏感度,介電質層的厚度必須小於漸逝波所能穿透之深度,以確保表面電漿共振現象得以產生。
由於研究之需要,本研究開發出自動化高解析度角度調變SPR影像系統,可取代原有之GWC SPR imager,系統操作方便,節省實驗時間,並可減少人為判讀誤差,系統角度調變之感測解析度可由1.14×10-3RIU提高至3.93×10-5RIU,強度調變之感測解析度由1.05×10-6RIU提升至4.66×10-7RIU。另外本研究嘗試提出一創新式波導耦合側向表面電漿波元件以研究側向表面電漿波的存在及波導耦合機制,配合對稱介電質膜層設計,期望將來能實做出一個生醫感測器。
zh_TW
dc.description.abstractSurface plasmon resonance (SPR) phenomenon has been used in optical sensors for decades. For traditional sensor applications, we often use 50 nm gold film for optimal SPR signal. However, In the range of visible light, the FWHM(Full Width Half Maximum) of SPR curve is about 4 to 6 degrees. To improve the sensor performance, we can work on reducing FWHM and increasing active sensing area by propagation length of SPR wave. In traditional approach, which uses the sensing ability of field depth in 100~200nm perpendicular to the interface between metal and dielectric. We use the traveling wave in the plane parallel to the interface of metal and dielectric to reach the propagation length of much longer distance. This research is to investigate a special layer design to improve detection sensitivity and integrate waveguide couple method to study lateral propagation of SPR.
According to our research results, long-range SPR indeed help SPR coupling. By appropriate selection of dielectric material and metal thickness, we can enhance sensing ability in designed detecting range. Most important is that the thickness of dielectric layer have to be thinner than the depth evanescent wave can reach.
We developed an automatic high resolution SPR angle modulation system, that can shorten experiment time and avoid manual’s error. The resolution can reach 3.93×10-5 RIU for angle modulation and 4.66×10-7 RIU for intensity modulation. Also, this research propose a novel waveguide coupling sensing chip of lateral propagation SPR. We hope to verify the existence of lateral propagation of SPR and understand the waveguide coupling mechanism. By applying the long-range SPR layer design, a sensitive biosensor can be realized in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:52:04Z (GMT). No. of bitstreams: 1
ntu-94-R92548013-1.pdf: 3035285 bytes, checksum: 0bffe8045b0031d0bec77928e420898a (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents第一章 序論.............................................1
1.1 前言.............................................1
1.2 研究動機與貢獻...................................2
1.3 文獻回顧.........................................3
1.3.1 SPR的量測方式及比較........................3
1.3.2 Long-range SPR的膜層特性....................5
1.3.3 SPW的研究歷史及傳播距離...................7
1.3.4 SPW量測機構的研究.........................7
1.3.5 光波導表面電漿共振感測器研究結果...........10
1.4 論文架構.........................................12
第二章 基本原理.........................................13
2.1 全反射之漸逝波與表面電漿共振.....................13
2.1.1 衰逝全反射.................................13
2.1.2 表面電漿共振...............................14
2.2 表面電漿共振理論模型.............................15
2.2.1 以Maxwell’s equations建立表面電漿共振理論推
導.........................................15
2.2.2 SPW側向傳播距離及縱向穿透深度.............18
2.3 耦合條件及方式...................................20
2.4 Long-range表面電漿共振............................21
2.4.1 Long-range架構.............................21
2.4.2 Long-range SPR理論模型.....................22
第三章 模擬.............................................26
3.1 漸逝場穿透深度...................................26
3.2 Long-range膜層設計及SPR現象模擬..................27
3.2.1 傳統Kretschmann架構下30nm金膜與50nm金膜..28
3.2.2 LRSPR架構下1000nm MgF2 - 30nm 金膜.........29
3.2.3 LRSPR架構下500nm MgF2 - 30nm 金膜..........29
3.3 膜層厚度之選擇及檢測樣本與傳播長度之關係.........30
第四章 實驗材料及設計...................................34
4.1 感測晶片之製作及膜厚量測........................34
4.1.1 感測晶片之製作.............................34
4.1.2 膜厚量測...................................36
4.2 晶片特性實驗-SPR量測及生物固定化...............37
4.2.1 SPR訊號量測..............................37
4.2.2 生物固定化.................................38
4.3 影像式自動角度調變SPR量測系統之架設............41
4.4 波導耦合側向表面電漿波元件之設計及製作..........45
4.4.1 波導元件設計...............................45
4.4.2 波導元件製作...............................47
4.4.3 波導量測系統...............................49
4.5 實驗流程........................................50
第五章 實驗結果及討論...................................51
5.1 各膜層設計之SPR實驗結果與討論...................51
5.2 感測晶片特性與生物固定化實驗.....................57
5.2.1 酒精濃度實驗...............................57
5.2.2 生物固定化實驗.............................60
5.3 自動化高解析度角度調變SPR影像系統架設實驗.......62
5.4 波導耦合側向表面電漿波元件實驗...................64
第六章 結論.............................................67
第七章 未來展望.........................................68
參考文獻.................................................69
dc.language.isozh-TW
dc.title改善表面電漿波側向傳播之對稱介電質結構設計與應用zh_TW
dc.titleLateral Propagation Surface Plasmon Wave Optimization by Symmetric Dielectric Matching Structureen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王維新,李世光,周晟,王安邦,賴信志
dc.subject.keyword表面電漿共振,漸逝波,光波導,zh_TW
dc.subject.keywordSPR,long-range SPR,evanescent wave,waveguide,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2005-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
2.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved