Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36109
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江金倉
dc.contributor.authorWei-Cheng Luen
dc.contributor.author盧韋誠zh_TW
dc.date.accessioned2021-06-13T07:51:33Z-
dc.date.available2005-07-28
dc.date.copyright2005-07-28
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citation[1] Cai, Z. and Sun, Y. (2003). Local linear estimation for time-dependent coefficients
in Cox’s regression models. Scandinavian Journal of Statistics. 30, 93-111.
[2] Casella, G. and Robert, C. P. (1996). Rao-Blackwellisation of sampling schemes.
Biometrika. 83, 81-94.
[3] Chiang, C. T., Rice, J. A., andWu, C. O. (2000). Smoothing spline estimation for
varying coefficient models with repeatedly measured dependent variable. Journal
of the American Statistical Association. 96, 605-619.
[4] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete observations. Journal of the Royal Statistical Society. B39,
1-38.
[5] Fan, J. Q. and Zhang, J. T. (2000). Functional linear models for longitudinal
data. Journal of the Royal Statistical Society. B62, 303-322.
[6] Gray, R. J. (1992). Flexible methods for analyzing survival data using splines,
with applications to breast cancer prognosis. Journal of the American Statistical
Association. 87, 942-951.
[7] H¨ammerlin, G. and Hoffmann, K. (1991). Numerical Mathematics. Springer-
Verlag, New York.
[8] Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modeling of longitudinal
measurements and event time data. Biostatistics. 4, 465-480.
[9] Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L. P. (1998). Nonparametric
smoothing estimates of time-varying coefficient models with longitudinal data.
Biometrika. 85, 809-822.
[10] Huang J. Z., Wu C. O., and Zhuo L. (2002). Varying-coefficient models and basis
function approximations for the analysis of repeated measurements. Biometrika.
89, 111-128.
[11] Martinussen, T. and Scheike, T. H. (2002). A flexible additive multiplicative
hazard model. Biometrika. 89, 283-298.
[12] Murphy, S. and Sen, P. (1991). Time-dependent coefficients in a Cox-type regression
model. Stochastic Processes an Their Applications. 39, 153-180.
[13] Tian, L., Zucker, D., and Wei, L. J. (2005). On the Cox model with time-varying
regression coefficients. Journal of the American Statistical Association. 100, 172-
183.
[14] Tsiatis, A. A., DeGruttola, V., and Wulfsohn, M. S. (1995). Modeling the relationship
of survival to longitudinal data measured with error. Applications to
survival and CD4 counts in patients with AIDS. Journal of the American Statistical
Association. 90, 27-37.
[15] Winnett, A. and Sasieni, P. (2003). Iterated residuals and time-varying covariate
effect in Cox regression. Journal of the Royal Statistical Society. B62, 473-488.
[16] Wu, C. O., Chiang, C. T., and Hoover, D. R. (1998). Asymptotic confidence
regions for kernel smoothing of a varying coefficient model with longitudinal
data. Journal of the American Statistical Association. 93, 1388-1402.
[17] Wu, C. F. J. (1983). On the convergence of the EM algorithm. The Annals of
Statistics. 11, 95-103.
[18] Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal
data measured with error. Biometrics. 53, 330-339.
[19] Zuuker D. M. and Karr A. F. (1990). Nonparametric survival analysis with timedependent
cvariates: a penalized partial likelihood approach. The Annals of
Statistics. 18, 329-353.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36109-
dc.description.abstract本論文主要針對時間函數之反應值及存活時間建立一合理且具解釋性的變異係數潛藏因子模型。
藉由更廣泛之非參數化潛藏因子模式,反應值內部相關,反應值與存活時間之相關及觀測個體在此兩隨機變數之非齊一性質被建立。
在長期追蹤及存活資料結構下,我們利用參數函數之基底展式估計值做為參數函數之估計。
在此,我們更進一步推導所提出估計函數之大樣本性質,並借助模擬樣本檢視估計式之有限樣本性質。
最後,我們將討論衍生之有趣研究主題及所提出模式延伸之可行性。
zh_TW
dc.description.abstractIn this thesis, a more flexible and easily explained joint latent varying-coefficient model
is used to model the relationship between time-dependent responses and a failure time.
Here, the dependence mechanism within time-dependent responses, between time-dependent responses
and a failure time, and the heterogeneity among different subjects on
time-dependent responses and failure times are established
through a non-parametric latent process.
Based on the longitudinally measured responses and survival time data, we mainly propose an estimation
procedure for the time-dependent parameter functions. In our estimation approach, the parameter functions are
first approximated via the corresponding basis function expansions.
Trough the estimates of parameters in the basis function expansions,
the estimated parameter functions are then obtained.
Moreover, the asymptotic risks
of the estimated functions are developed in this study. A Monte-Carlo simulation is conducted to examine the
finite sample properties of the proposed estimated functions. Finally, some additional topics of interest
are considered and a possible extension of our proposed model to more complicated joint processes is discussed.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:51:33Z (GMT). No. of bitstreams: 1
ntu-94-R91221014-1.pdf: 970893 bytes, checksum: f4e581becd2738bcc258fca7c14a248c (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents ------------------- ii
List of Tables ---------------------- iii
List of Figures --------------------- iv
Acknowledgements -------------------- v
Abstract ---------------------------- vi
摘要 -------------------------------- vii
1 Introduction -------------------------------------------------- 1
2 Joint Latent Model and Estimation Procedure ------------------- 4
2.1 Model ------------------------------------------------------- 4
2.2 Estimation -------------------------------------------------- 6
3 Asymptotic Properties ----------------------------------------- 9
4 Numerical Study ----------------------------------------------- 18
5 Further Study ------------------------------------------------- 25
Bibliography ---------------------------------------------------- 27
dc.language.isoen
dc.title長期追蹤及存活資料下潛藏因子結合模型zh_TW
dc.titleA More Flexible Joint Latent Model for Longitudinal and Failure Time Dataen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃冠華,陳宏
dc.subject.keyword存活時間,長期追蹤資料,基底展式,潛藏因子,變異係數模型,zh_TW
dc.subject.keywordbasis expansion,failure time,latent variable,longitudinal measurements,varying-coefficient,en
dc.relation.page29
dc.rights.note有償授權
dc.date.accepted2005-07-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
948.14 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved