請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36096完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉懷勝(Hwai-Shen Liu) | |
| dc.contributor.author | Tsz-Yi Tsai | en |
| dc.contributor.author | 蔡詞伊 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:51:17Z | - |
| dc.date.available | 2016-08-10 | |
| dc.date.copyright | 2011-08-10 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-21 | |
| dc.identifier.citation | Adam J., Lindblad N., Hendricks C. (1968) The collision, coalescence, and disruption of water droplets. Journal of Applied Physics 39:5173-5180.
Ashgriz N., Givi P. (1989) Coalescence efficiencies of fuel droplets in binary collisions. International Communications in Heat and Mass Transfer 16:11-20. Ashgriz N., Poo J. (1990) Coalescence and separation in binary collisions of liquid drops. Journal of Fluid Mechanics 221:183-204. Billet R., Schultes M. (1991) Modelling of pressure drop in packed columns. Chemical Engineering & Technology 14:89-95. Bruining W., Joosten G., Beenackers A., Hofman H. (1986) Enhancement of gas-liquid mass transfer by a dispersed second liquid phae. Chemical Engineering Science 41:1873-1877. Burns J.R., Ramshaw C. (1996) Process intensification: Visual study of liquid maldistribution in rotating packed beds. Chemical Engineering Science 51:1347-1352. Burns J.R., Jamil J.N., Ramshaw C. (2000) Process intensification: operating characteristics of rotating packed beds -- determination of liquid hold-up for a high-voidage structured packing. Chemical Engineering Science 55:2401-2415. Cents A., Brilman D., Versteeg G. (2001) Gas absorption in an agitated gas-liquid-liquid system. Chemical Engineering Science 56:1075-1083. Chandra A., Goswami P., Rao D. (2005) Characteristics of flow in a rotating packed bed (HIGEE) with split packing. Industrial & Engineering Chemistry Research 44:4051-4060. Chang C.C., Chiu C.Y., Chang C.Y., Chang C.F., Chen Y.H., Ji D.R., Yu Y.H., Chiang P.C. (2009) Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed. Journal of Hazardous Materials 161:287-293. Chen J., Shao L., Zhang C., Chu G. (2003) Preparation of TiO 2 nanoparticles by a rotating packed bed reactor. Journal of materials science letters 22:437-439. Chen J., Li Y., Wang Y., Yun J., Cao D. (2004a) Preparation and characterization of zinc sulfide nanoparticles under high-gravity environment. Materials research bulletin 39:185-194. Chen J.F., Wang Y.H., Guo F., Wang X.M., Zheng C. (2000) Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation. Industrial & Engineering Chemistry Research 39:948-954. Chen J.F., Zhou M.Y., Shao L., Wang Y.Y., Yun J., Chew N.Y.K., Chan H.K. (2004b) Feasibility of preparing nanodrugs by high-gravity reactive precipitation. International Journal of Pharmaceutics 269:267-274. Chen J.F., Gao H., Zou H.K., Chu G.W., Zhang L., Shao L., Xiang Y., Wu Y.X. (2010a) Cationic polymerization in rotating packed bed reactor: Experimental and modeling. AIChE Journal 56:1053-1062. Chen Y.-S., Lin F.-Y., Lin C.-C., Tai C.Y.-D., Liu H.-S. (2006a) Packing characteristics for mass transfer in a rotating packed bed. Industrial and Engineering Chemistry Research 45:6846-6853. Chen Y.-S., Hsu Y.-C., Lin C.-C., Tai C.Y.-D., Liu H.-S. (2008) Volatile organic compounds absorption in a cross-flow rotating packed bed. Environmental Science and Technology 42:2631-2636. Chen Y.H., Huang Y.H., Lin R.H., Shang N.C. (2010b) A continuous-flow biodiesel production process using a rotating packed bed. Bioresource Technology 101:668-673. Chen Y.S. (2011) Correlations of Mass Transfer Coefficients in a Rotating Packed Bed. Industrial & Engineering Chemistry Research. Chen Y.S., Liu H.S. (2002) Absorption of VOCs in a Rotating Packed Bed. Industrial & Engineering Chemistry Research 41:1583-1588. Chen Y.S., Lin C.C., Liu H.S. (2005a) Mass transfer in a rotating packed bed with viscous Newtonian and non-Newtonian fluids. Industrial & Engineering Chemistry Research 44:1043-1051. Chen Y.S., Lin C.C., Liu H.S. (2005b) Mass transfer in a rotating packed bed with various radii of the bed. Industrial & Engineering Chemistry Research 44:7868-7875. Chen Y.S., Liu H.S., Lin C.C., Liu W.T. (2004c) Micromixing in a rotating packed bed. Journal of Chemical Engineering of Japan 37:1122-1128. Chen Y.S., Tai C.Y.D., Chang M.H., Liu H.S. (2006b) Characteristics of micromixing in a rotating packed bed. Journal of the Chinese Institute of Chemical Engineers 37:63-69. Chiang C.Y., Chen Y.S., Liang M.S., Lin F.Y., Tai C.Y.D., Liu H.S. (2009) Absorption of ethanol into water and glycerol/water solution in a rotating packed bed. Journal of the Taiwan Institute of Chemical Engineers 40:418-423. Dagaonkar M., Heeres H., Beenackers A., Pangarkar V. (2003) The application of fine TiO2 particles for enhanced gas absorption. Chemical Engineering Journal 92:151-159. Das A., Bhowal A., Datta S. (2008) Continuous biosorption in rotating packed-bed contactor. Industrial & Engineering Chemistry Research 47:4230-4235. Das T., Bandopadhyay A., Parthasarathy R., Kumar R. (1985) Gas--liquid interfacial area in stirred vessels: The effect of an immiscible liquid phase. Chemical Engineering Science 40:209-214. Demmink J., Mehra A., Beenackers A. (1998) Gas absorption in the presence of particles showing interfacial affinity:: case of fine sulfur precipitates. Chemical Engineering Science 53:2885-2902. Guo F., Zheng C., Guo K., Feng Y., Gardner N.C. (1997) Hydrodynamics and mass transfer in cross-flow rotating packed bed. Chemical Engineering Science 52:3853-3859. Guo K., Guo F., Feng Y., Chen J., Zheng C., Gardner N.C. (2000) Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor. Chemical Engineering Science 55:1699-1706. Jiang Y., Umemura A., Law C. (1992) An experimental investigation on the collision behaviour of hydrocarbon droplets. Journal of Fluid Mechanics 234:171-190. Jiao W., Liu Y., Qi G. (2010a) A new impinging stream-rotating packed bed reactor for improvement of micromixing iodide and iodate. Chemical Engineering Journal 157:168-173. Jiao W.Z., Liu Y.Z., Qi G.S. (2010b) Gas Pressure Drop and Mass Transfer Characteristics in a Cross-flow Rotating Packed Bed with Porous Plate Packing. Industrial & Engineering Chemistry Research 49:3732-3740. Kelleher T., James R. (1996) Distillation studies in a high-gravity contactor. Industrial & Engineering Chemistry Research 35:4646-4655. Keyvani M., Gardner N.C. (1989) Operating characteristics of rotating beds. Chemical Engineering Progress 85:48-52. Ku Y., Ji Y.S., Chen H.W. (2008) Ozonation of o-cresol in aqueous solutions using a rotating packed-bed reactor. Water Environment Research 80:41-46. Lalanne F., Malhautier L., Roux J.C., Fanlo J.L. (2008) Absorption of a mixture of volatile organic compounds (VOCs) in aqueous solutions of soluble cutting oil. Bioresource Technology 99:1699-1707. Lekhal A., Chaudhari R., Wilhelm A., Delmas H. (1997) Gas-liquid mass transfer in gas-liquid-liquid dispersions. Chemical Engineering Science 52:4069-4077. Li Y., Ji J., Yu Y., Xu Z., Li X. (2010) Hydrodynamic Behavior in a Rotating Zigzag Bed. Chinese Journal of Chemical Engineering 18:34-38. Lin C.C., Liu H.S. (2000) Adsorption in a centrifugal field: Basic dye adsorption by activated carbon. Industrial & Engineering Chemistry Research 39:161-167. Lin C.C., Liu W.T. (2006) Removal of an undesired component from a valuable product using a rotating packed bed. Journal of Industrial and Engineering Chemistry 12:455-459. Lin C.C., Jian G.S. (2007) Characteristics of a rotating packed bed equipped with blade packings. Separation and Purification Technology 54:51-60. Lin C.C., Liu W.T. (2007) Mass transfer characteristics of a high-voltage rotating packed bed. Journal of Industrial and Engineering Chemistry 13:71-78. Lin C.C., Su Y.R. (2008) Performance of rotating packed beds in removing ozone from gaseous streams. Separation and Purification Technology 61:311-316. Lin C.C., Chen Y.S., Liu H.S. (2000) Prediction of liquid holdup in countercurrent-flow rotating packed bed. Chemical Engineering Research and Design 78:397-403. Lin C.C., Ho T.J., Liu W.T. (2002) Distillation in a rotating packed bed. Journal of Chemical Engineering of Japan 35:1298-1304. Lin C.C., Liu W.T., Tan C.S. (2003) Removal of carbon dioxide by absorption in a rotating packed bed. Industrial & Engineering Chemistry Research 42:2381-2386. Lin C.C., Chen Y.S., Liu H.S. (2004a) Adsorption of dodecane from water in a rotating packed bed. J. Chin. Inst. Chem. Eng 35:531. Lin C.C., Lin Y.H., Tan C.S. (2010) Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds. Journal of Hazardous Materials 175:344-351. Lin C.C., Wei T.Y., Liu W.T., Shen K.P. (2004b) Removal of VOCs from gaseous streams in a high-voidage rotating packed bed. Journal of Chemical Engineering of Japan 37:1471-1477. Lin C.C., Wei T.Y., Hsu S.K., Liu W.T. (2006) Performance of a pilot-scale cross-flow rotating packed bed in removing VOCs from waste gas streams. Separation and Purification Technology 52:274-279. Lin C.C., Chen B.C., Chen Y.S., Hsu S.K. (2008) Feasibility of a cross-flow rotating packed bed in removing carbon dioxide from gaseous streams. Separation and Purification Technology 62:507-512. Lin C.C., Chao C.Y., Liu M.Y., Lee Y.L. (2009) Feasibility of ozone absorption by H2O2 solution in rotating packed beds. Journal of Hazardous Materials 167:1014-1020. Littel R., Versteeg G., Van Swaaij W. (1994) Physical absorption of CO2 and propene into toluene/water emulsions. AIChE Journal 40:1629-1638. Liu H.S., Lin C.C., Wu S.C., Hsu H.W. (1996) Characteristics of a rotating packed bed. Industrial and Engineering Chemistry Research 35:3590-3596. Munjal S., Dudukovc M.P., Ramachandran P. (1989a) Mass-transfer in rotating packed beds--I. Development of gas--liquid and liquid--solid mass-transfer correlations. Chemical Engineering Science 44:2245-2256. Munjal S., Dudukovic M.P., Ramachandran P. (1989b) Mass-transfer in rotating packed beds--II. Experimental results and comparison with theory and gravity flow. Chemical Engineering Science 44:2257-2268. Nagy E. (1995) Three-phase mass transfer: one-dimensional heterogeneous model. Chemical Engineering Science 50:827-836. Qian J., Law C. (1997) Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics 331:59-80. Qian Z., Xu L.B., Li Z.H., Li H., Guo K. (2010) Selective Absorption of H2S from a Gas Mixture with CO2 by Aqueous N-Methyldiethanolamine in a Rotating Packed Bed. Industrial & Engineering Chemistry Research. Quarderer G.J., Trent D.L., Stewart E.J., Tirtowidjojo, Mehta J., Tirtowidjojo A. (2000) Method for synthesis of hypohalous acid, in: T. D. C. Company (Ed.). Ramshaw C., Mallinson R.H. (1981) Mass transfer process, US Patent 4,283,255. Rao D.P., Kumar M.P. (1990) Studies on a high-gravity gas-liquid contactor. Industrial and Engineering Chemistry Research 29:917-920. Rao D.P., Bhowal A., Goswami P.S. (2004) Process Intensification in Rotating Packed Beds (HIGEE): An Appraisal. Industrial and Engineering Chemistry Research 43:1150-1162. Sawistowski H. (1957) Flooding velocities in packed columns operating at reduced pressures. Chemical Engineering Science 6:138-140. Shao L., Yu Y., Bian S., Chen J., Li X. (2005) Synthesis of nanosized Y-type TiOPc by a high gravity method. Journal of materials science 40:4373-4374. Singh S.P., Wilson J.H., Counce R.M., Villiers-Fisher J.F., Jennings H.L., Lucero A.J., Reed G.D., Richard A A., Mike G E. (1992) Removal of volatile organic compounds from groundwater using a rotary air stripper. Industrial and Engineering Chemistry Research 31:574-580. Tai C.Y., Tai C., Liu H. (2006) Synthesis of submicron barium carbonate using a high-gravity technique. Chemical Engineering Science 61:7479-7486. Tai C.Y., Wang Y.H., Liu H.S. (2008) A green process for preparing silver nanoparticles using spinning disk reactor. AIChE Journal 54:445-452. Tai C.Y., Chia-Te Tai, Chang M.H., Liu H.S. (2007) Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Industrial & Engineering Chemistry Research 46:5536-5541. Tan C.-S., Lee P.-L. (2008) Supercritical CO2 desorption of activated carbon loaded with 2,2,3,3-tetrafluoro-1-propanol in a rotating packed bed. Environmental Science and Technology 42:2150-2154. Tan C.S., Chen J.E. (2006) Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed. Separation and Purification Technology 49:174-180. Tung H.H., Mah R.S.H. (1985) Modeling liquid mass transfer in higee separation process. Chemical Engineering Communications 39:147-153. Vinke H., Hamersma P., Fortuin J. (1993) Enhancement of the gas-absorption rate in agitated slurry reactors by gas-adsorbing particles adhering to gas bubbles. Chemical Engineering Science 48:2197-2210. Wang C., Lin C., Hung W., Huang W., Law C. (2004) On the burning characteristics of collision-generated water/hexadecane droplets. Combustion science and technology 176:71-93. Wang G., Xu Z., Yu Y., Ji J. (2008) Performance of a rotating zigzag bed--A new HIGEE. Chemical Engineering and Processing: Process Intensification 47:2131-2139. Whelpdale D., List R. (1971) The coalescence process in raindrop growth. Journal of Geophysical Research 76:2836-2856. Xiao Q.G., Tao X., Chen J.F. (2007) Silica nanotubes based on needle-like calcium carbonate: fabrication and immobilization for glucose oxidase. Industrial & Engineering Chemistry Research 46:459-463. Yang H.J., Chu G.W., Zhang J.W., Shen Z.G., Chen J.F. (2005) Micromixing efficiency in a rotating packed bed: Experiments and simulation. Industrial & Engineering Chemistry Research 44:7730-7737. Yang K., Chu G.-W., Shao L., Luo Y., Chen J.-F. (2009) Micromixing efficiency of rotating packed bed with premixed liquid distributor. Chemical Engineering Journal 153:222-226. Yang S.T., Lo Y.M., Min D.B. (1996) Xanthan gum fermentation by Xanthomonas campestris immobilized in a novel centrifugal fibrous-bed bioreactor. Biotechnology Progress 12:630-637. Yang W., Wang Y., Chen J., Fei W. (2010) Computational fluid dynamic simulation of fluid flow in a rotating packed bed. Chemical Engineering Journal 156:582-587. DOI: DOI: 10.1016/j.cej.2009.04.013. Zhang G.D., Cai W.F., Xu C.J., Zhou M. (2006) A general enhancement factor model of the physical absorption of gases in multiphase systems. Chemical Engineering Science 61:558-568. Zhang L.-L., Wang J.-X., Xiang Y., Zeng X.-F., Chen J.-F. (2011) Absorption of Carbon Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial & Engineering Chemistry Research 50:6957-6964. DOI: 10.1021/ie1025979. Zhao H., Wang J.X., Zhang H.X., Shen Z.G., Yun J., Chen J.F. (2009) Facile Preparation of Danazol Nanoparticles by High-Gravity Anti-solvent Precipitation (HGAP) Method. Chinese Journal of Chemical Engineering 17:318-323. 江佳穎 (2008) 旋轉填充床之高黏度系統中起提甲醇, 國立台灣大學化學工程學碩士論文. 劉奕瑩 (2008) 旋轉填充床之疏水性有機揮發物質的質傳研究, 國立台灣大學化學工程學碩士論文. 高天冀 (1998) 液滴碰撞行為分析和液滴產生器研發設計, 國立成功大學機械工程學碩士論文 洪偉恭 (2001) 撞擊液滴於高溫下之燃燒現象觀察與研究, 國立台灣大學機械工程學碩士論文 傅新淵 (2002) 多組份二元液滴碰撞與燃燒之研究, 國立台灣大學機械工程學碩士論文 黃偉智 (2002) 雙組份撞擊液滴在高溫環境下之燃燒現象觀察, 國立台灣大學機械工程學碩士論文 黃偉豪 (2004) 雙組份柴油撞擊液滴之碰撞現象觀察, 國立台灣大學機械工程學碩士論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36096 | - |
| dc.description.abstract | 本研究為錯流式旋轉填充床內吸收甲苯的質傳程序,分別以水、矽油以及矽油加水為吸收劑去吸收甲苯。由於甲苯為疏水性有機揮發物,利用水去吸收甲苯實驗中,其最佳吸收分率為0.12,可見水並非一個適當的吸收劑。在以疏水性之吸收劑矽油吸收甲苯實驗中,其最佳吸收分率可達0.9,可見矽油對於甲苯的吸收是不錯的吸收劑。
接著,利用矽油加水吸收甲苯實驗中發現,在固定矽油流量下,加水對於吸收程序有正向幫助。如在氣體流量為21.3L/min,甲苯濃度為1400ppmV,轉速為500rpm,矽油流量為0.1L/min下,水量由0.01L/min增加至0.6L/min,吸收分率由0.37增加至0.74。由先前實驗得知,水並不是一個好的吸收劑,但在矽油加水吸收甲苯實驗中發現,加水後對於吸收分率有很大的提升,可見水不再只是扮演單純的吸收劑,而是扮演著幫助矽油吸收甲苯的角色。在低矽油流量(0.1L/min)下,水主要是扮演增加總液體流量的角色,使得矽油在床內分佈更均勻,進而提高吸收效果。在高矽油流量(0.5L/min)下,水主要是扮演被矽油包覆的角色,藉由矽油包覆水來使得矽油有效接觸面積上升,進而提升吸收效果。在矽油加水實驗中,其最佳之吸收分率為0.96,達到可以直接排放之標準。 | zh_TW |
| dc.description.abstract | This work presented a mass transfer process of absorbing toluene in a cross-flow rotating packed bed. Water, silicone oil, and silicone oil with water were used as absorbents in the experiments to absorb toluene, respectively. The best absorption fraction for water was 0.12. This showed that water was not an appropriate absorbent for toluene, owing to that toluene is hydrophobic VOC. On the contrary, the best absorption fraction for hydrophobic silicone oil was 0.9, showing that it was a good absorbent in this process.
Using silicone oil with water as absorbent in the experiments, changing water flow rate that would enhance the absorption efficiency obviously at constant silicone oil flow rate. For example, at gas flow rate 21.3L/min, toluene concentration 1400ppmV, rotor speed 500rpm, oil flow rate 0.1L/min, water flow rate changing from 0.01L/min to 0.6L/min, the absorption fraction varied from 0.37 to 0.74. However, in the previous study, it showed that water was not a good absorbent. It was thus clear that water did not act as an absorbent. Actually, it played a role of assisting silicone oil to absorb toluene. At low oil flow rate (0.1L/min), water played a role of increasing the total liquid flow rate that led the silicone oil well distribution. Thus, the silicone oil effective gas-liquid interfacial area would increase. Then the absorption efficiency increased. At high oil flow rate (0.5L/min), water played a role of inserting into silicone oil that would enhance the effective gas-liquid contact area of oil, thus increase the absorption efficiency. In the silicone oil with water as absorbent to absorb toluene experiments, the best absorption fraction was 0.96, satisfying of emission regulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:51:17Z (GMT). No. of bitstreams: 1 ntu-100-R98524040-1.pdf: 2457117 bytes, checksum: 5f56535713650092fd7bbd7320595cd1 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄
摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XI 第一章 緒論 1 1-1序言 1 1-2 研究方向 2 第二章 文獻回顧 3 2-1 旋轉填充床(ROTATING PACKED BED, RPB)起源 3 2-1-1旋轉填充床之構造與研究 4 2-1-2 壓降 5 2-1-3 液體流態、液體滯留量、液體滯留時間 9 2-1-4 液膜質傳係數 14 2-1-5 氣膜質傳係數 17 2-1-6 錯流式旋轉填充床文獻回顧 20 2-1-7旋轉填充床填充床之設計 24 2-1-8 旋轉填充床之微觀混合 27 2-1-9旋轉填充床的其他應用與發展 30 2-2揮發性有機物質處理方法 39 2-2-1溶液中添加不互溶物質吸收VOCs 39 2-2-1-1氣-(液+液)系統 40 2-2-1-2氣-(液+固)系統 41 2-3旋轉填充床中液滴的碰撞 43 2-3-1相同液滴之碰撞行為 43 2-3-2 具有表面張力差異之雙液滴碰撞 44 第三章 實驗與分析方法 50 3-1實驗裝置 50 3-2實驗藥品與分析儀器 52 3-3實驗方法 54 3-3-1實驗流程 54 3-3-2平衡常數實驗方法 56 3-4總括氣膜體積質傳係數(OVERALL VOLUMETRIC MASS TRANSFER COEFFICIENT)分析 59 3-4-1雙模理論(two-film theory) 59 3-4-2錯流式旋轉中氣膜質傳係數分析 62 第四章 結果與討論 67 4-1 以吸收分率評估質傳效果 67 4-1-1 以水為吸收劑吸收甲苯氣體 68 4-1-2 以矽油為吸收劑吸收甲苯氣體 68 4-1-3矽油加水混合做為吸收劑吸收氣體 69 4-1-3-1水與油碰撞包覆效應以及總液體流量對吸收分率之影響 70 4-2 矽油加水與單獨水或矽油之甲苯吸收效果比較,E 76 4-2-1 水的流量(Lw)對E之影響 76 4-2-2 轉速對E之影響 85 4-3矽油加水吸收程序中,總液體流量與碰撞包覆效應對吸收分率之影響 92 4-3-1固定總液體流量,觀察碰撞包覆效應對吸收效果之影響 92 4-3-2在總液量類似下,矽油加水混合使碰撞包覆效應提升對吸收分率的影響 98 4-4以質傳係數評估質傳的效果 102 4-4-1平衡常數的估算 102 4-4-2矽油加水對於質傳係數(KGa)的影響 109 4-5矽油加水吸收程序中,總液體流量與碰撞包覆效應對質傳係數(KGA)之影響 114 4-5-1在固定總液體流量下,水與油混合比例大於或接近0.2對質傳係數的影響 114 4-5-2在總液量類似下,矽油加水混合之碰撞包覆對質傳係數KGa的影響 118 4-6質傳係數經驗式分析比較 122 4-6-1 利用劉(2008)之經驗式修正後探討矽油加水對於質傳的影響 122 4-6-2 利用Chen(2011)之經驗式探討矽油加水對於質傳的影響 126 第五章 結論 131 參考文獻 134 符號說明 141 附錄A 甲苯氣體濃度校正曲線 146 附錄B 水吸收甲苯實驗數據 147 附錄C 矽油吸收甲苯實驗數據 149 附錄D 矽油加水吸收甲苯 150 附錄E Matlab 程式求總括氣膜體積質傳係數(Kga) 159 附錄F 經旋轉填充床收及之液體中,乳化層內水與油含量 161 附錄G 油多乳化層顯微鏡觀察 162 附錄H 油與水經超重力甩出現象觀察 163 附錄I揮發性有機物空氣汙染管制以及排放標準 165 圖目錄 圖2-1-1.1逆流式旋轉填充床(Chen and Liu, 2002) 4 圖2-1-1.2 錯流式旋轉填充床(許, 2004) 5 圖2-1-2.1 壓降在不同操作狀態下結果(Keyvani and Gardner, 1989) 8 圖2-1-2.2 旋轉填充床壓降隨轉速變化之特性(Singh et al., 1992) 8 圖2-1-2.3 壓降與氣體流速關係圖(Rao et al., 2004) 9 圖2-1-3.1液體在旋轉填充床流動模式示意圖(Burns and Ramshaw, 1996) 9 圖2-1-3.2 假設的旋轉填充床模型(Lin et al., 2000) 12 圖2-1-3.3壓降與液體滯留量隨氣體流量變化關係圖(Lin et al., 2000) 12 圖2-1-3.4利用壓降去預測液體滯流量與實驗之液體滯留量比較圖(Lin et al., 13 2000) 13 圖2-1-7.1分離填充物旋轉填充床(Chandra et al., 2005) 25 圖2-1-7.2葉片狀填充物旋轉填充床(Lin and Jian, 2007) 25 圖2-1-7.3鋸齒狀旋轉填充床Rotating Zigzag Bed, RZB(Wang et al., 2008) 26 圖2-1-7.4多層鋸齒狀旋轉填充床(Li et al., 2010) 26 圖2-1-8.1不同混合器之微觀混合效果比較(Chen et al., 2006b) 28 圖2-1-8.2 旋轉填充床液體有無預混合示意圖(a)無預混合(b)有預混合(Yang et al., 2009) 29 圖2-1-8.3撞擊流-旋轉填充床(Jiao et al., 2010a) 29 圖2-2-1-2氣液界面上顆粒覆蓋率,ζ氣泡表面實際顆粒覆蓋率,ζmax’為流動液體中氣泡表面最多顆粒覆蓋率,ζmax為靜止液體中氣泡表面最多顆粒覆蓋率 42 圖2-3-1.1 水滴一大氣壓下碰撞模式與其對應之韋伯數和碰撞參數關係(Ashgriz and Poo, 1990) 47 圖2-3-1.2 液滴與液滴碰撞現象:(1)跳開(Bouncing);(2)黏合(Coalescence);(3)反彈分離(Reflex Separation);(4)拉伸分離(Stretching Separation);(5)破碎(Shattering) 48 圖2-3-1.3 碳氫油滴在一大氣壓下碰撞模式與其對應韋伯數和碰撞參數關係(Qian and Law,1997) 48 圖2-3-2.1兩液滴碰撞示意圖 49 圖3-1錯流式旋轉填充床主體 51 圖3-3-1實驗流程圖 55 圖3-3-2.1平衡常數實驗裝置圖 58 圖3-3-2.2氣體出口處濃度隨時間變化關係圖 58 圖3-4-1雙膜理論示意圖 60 圖3-4-2.1錯流式旋轉填充床簡圖以及分割之微體積 62 圖3-4-2.2有限差分法與二維矩陣示意圖 64 圖4-1-1 水吸收甲苯,進料氣體濃度1400為ppmV,氣體流量為21.3L/min,在不同轉速下,液體流量對吸收分率的影響 72 圖4-1-2 矽油吸收甲苯,進料氣體濃度1400為ppmV,氣體流量為21.3L/min,在不同轉速下,液體流量對吸收分率的影響 72 圖4-1-3矽油加水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同矽油流量(A)0.1L/min (B)0.2L/min,在不同轉速下,水的流量對吸收分率的影響 73 圖4-1-3 矽油加水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同矽油流量(C)0.3L/min (D)0.4L/min,在不同轉速下,水的流量對吸收分率的影響 74 圖4-1-3 矽油加水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同矽油流量 (E)0.5L/min,在不同轉速下,水的流量對吸收分率的影響 75 圖4-1-3-1油與水碰撞後型態 75 圖4-2-1.1進料氣體濃度1400ppmV,氣體流量21.3L/min,不同矽油流量(A)0.1L/min (B)0.2L/min,在不同轉速下,水的流量對E的影響 79 圖4-2 -1.1 進料氣體濃度1400ppmV,氣體流量21.3L/min,不同矽油流量(C)0.3L/min (D)0.4L/min,在不同轉速下,水的流量對E的影響 80 圖4-2 -1.1 進料氣體濃度1400ppmV,氣體流量21.3L/min,不同矽油流量(E)0.5L/min,在不同轉速下,水的流量對E的影響 81 圖4-2 -1.2 進料氣體濃度1400ppmV,氣體流量21.3L/min,不同水流量(A)0.01L/min,在不同轉速下,矽油流量對E的影響 81 圖4-2 -1.2 進料氣體濃度1400ppmV,氣體流量21.3L/min,不同水流量(B)0.03L/min (C)0.05L/min,在不同轉速下,矽油流量對E的影響 82 圖4-2 -1.2 進料氣體濃度1400ppmV,氣體流量21.3L/min,不同水流量(D)0.15L/min (E)0.2L/min,在不同轉速下,矽油流量對E的影響 83 圖4-2 -1.2 進料氣體濃度1400ppmV,氣體流量21.3L/min,不同水流量(F)0.4L/min,在不同轉速下,矽油流量對E的影響 84 圖4-2 -2.1進料氣體濃度1400ppmV,氣體流量21.3L/min,不同矽油流量(A)0.1L/min(B)0.2L/min,在不同水流量下,轉速對E的影響 88 圖4-2 -2.1進料氣體濃度1400ppmV,氣體流量21.3L/min,不同矽油流量(C)0.3L/min(D)0.4L/min,在不同水流量下,轉速對E的影響 89 圖4-2 -2.1進料氣體濃度1400ppmV,氣體流量21.3L/min,不同矽油流量 90 (E)0.5L/min,在不同水流量下,轉速對E的影響 90 圖4-2-2.2 油滴與水滴撞擊前後示意圖 90 圖4-2-2.3不同體積之水滴與油滴碰撞包覆對於矽油表面積之影響 91 圖4-3 -1.1矽油甲入水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同總液體流量(A)0.25L/min (B)0.35L/min(C)0.45L/min,在不同水與油混合比例下,轉速對吸收分率的影響 94 圖4-3 -1.1矽油加入水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同總液體流量(D)0.55L/min (E)0.6L/min(F)0.7L/min,在不同水與油混合比例下,轉速對吸收分率的影響 95 圖4-3 -1.2矽油加入水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,(A)轉速500rpm (B)轉速800rpm下,總液體流量和水與油混合比例對吸收分率的影響 96 圖4-3 -1.2矽油加入水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,(C)轉速1200rpm (D)轉速1700rpm下,總液體流量和水與油混合比例對吸收分率的影響 97 圖4-3 -2矽油加入水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同總液體流量(A)0.2L/min (B)0.3L/min,在不同水與油混合比例下,轉速對吸收分率的影響 100 圖4-3 -2矽油加入水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,總液體流量約(C)0.4L/min (D)0.5L/min,在不同水與油混合比例下,轉速對吸收分率的影響 101 圖4-4-1.1在28oC環境下,矽油加水吸收甲苯,氣體流量1.2L/min,進料氣體濃度1400ppmV, (A)矽油(25mL) (B) 水(4mL) +矽油(40mL) (C) 水(5mL)+ 矽油(25mL),氣體出口濃度與吸收劑濃度隨時間的變化 104 圖4-4-1.1在28oC環境下,矽油加水吸收甲苯,氣體流量1.2L/min,進料氣體濃度1400ppmV, (D)水(10mL)+矽油(40mL) (E) 水(10mL) +矽油(30mL) (F) 水(12.6mL)+ 矽油(30mL),氣體出口濃度與吸收劑濃度隨時間的變化 105 圖4-4-1.1在28oC環境下,矽油加水吸收甲苯,氣體流量1.2L/min,進料氣體濃度1400ppmV, (G) 水(12.5mL)+矽油(25mL) (H) 水(22.5mL) +矽油(30mL) (I) 水(30mL)+ 矽油(30mL),氣體出口濃度與吸收劑濃度隨時間的變化 106 圖4-4-1.1在28oC環境下,矽油加水吸收甲苯,氣體流量1.2L/min,進料氣體濃度1400ppmV, (J)水(37.5mL)+矽油(25mL) (K) 水(60mL) +矽油(30mL),氣體出口濃度與吸收劑濃度隨時間的變化 107 圖4-4-1.2在28oC環境下,平衡常數隨著水與油混合體積比之變化關係 108 圖4-4-2矽油加水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同矽油流量(A)0.1L/min (B)0.2L/min,在不同轉速下,水的流量對質傳係數(KGa)的影響 111 圖4-4-2矽油加水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同矽油流量(C)0.3L/min (D)0.4L/min,在不同轉速下,水的流量對質傳係數(KGa)的影響 112 圖4-4-2矽油加水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同矽油流量(E)0.5L/min,在不同轉速下,水的流量對質傳係數(KGa)的影響 113 圖4-5-1矽油加水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同總液體流量(A)0.25L/min (B)0.35L/min,在不同水與油混合比例下,轉速對質傳係數的影響 115 圖4-5-1矽油加水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同總液體流量(C)0.45L/min (D)0.55L/min,在不同水與油混合比例下,轉速對質傳係數的影響 116 圖4-5-1矽油加水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同總液體流量(E)0.6L/min (F)0.7L/min,在不同水與油混合比例下,轉速對質傳係數的影響 117 圖4-5-2 矽油加入水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同總液體流量約為(A)0.2L/min (B)0.3L/min,在不同水與油混合比例下,轉速對質傳係數的影響 120 圖4-5-2 矽油加入水混合吸收甲苯,進料氣體濃度1400ppmV,氣體流量21.3L/min,不同總液體流量約為(A)0.4L/min (B)0.5L/min,在不同水與油混合比例下,轉速對質傳係數的影響 121 圖4-6-1.1 經驗式(4-6-1.1)計算所得的KGa與實驗所得的KGa值比較對數圖 124 圖4-6-1.2 經驗式(4-6-1.2)計算所得的KGa與實驗所得的KGa值比較對數圖 124 圖4-6-1.3 矽油加水實驗數據帶入經驗式(4-6-1.2)計算所得的KGa與實驗所得的KGa值比較對數圖 125 圖4-6-1.4 矽油加水實驗數據和Hy為定值0.1帶入經驗式(4-6-1.2)計算所得的KGa與實驗所得的KGa值比較對數圖 125 圖4-6-2.1 利用Chen(2011)經驗式計算所得的KGa與實驗所得的KGa值比較對數圖 129 圖4-6-2.2 矽油加水實驗數據帶入Chen(2011)經驗式計算所得的KGa與實驗所得的KGa值比較對數圖 129 圖4-6-2.3 矽油加水實驗數據和Hy為定值0.1帶入經驗式Chen(2011)計算所得的KGa與實驗所得的KGa值比較對數圖 130 圖A-1 甲苯氣體濃度對層析之校正曲線(SRI 310C) 146 圖A-2 甲苯氣體濃度對層析之校正曲線(中國層析) 146 圖G-1 油多乳化層顯微鏡下觀察 (500rpm) 162 圖G-2 油多乳化層顯微鏡下觀察 (1700rpm) 162 圖H-1 Lo(0.2L/min)+Lw(0.05L/min),轉速為500rpm下之油水混合 163 圖H-2 Lo(0.2L/min)+Lw(0.05L/min),轉速為1700rpm下之油水混合 163 圖H-3 Lo(0.2L/min)+Lw(0.15L/min),轉速為500rpm下之油水混合 164 圖H-4 Lo(0.2L/min)+Lw(0.15L/min),轉速為1700rpm下之油水混合 164 表目錄 表2-1-9.1 旋轉填充床應用於吸收程序 31 表2-1-9.2 旋轉填充床應用於氣提與蒸餾程序 33 表2-1-9.3 旋轉填充床應用於吸附與脫附程序 34 表2-1-9.4 旋轉填充床應用於結晶與顆粒製備 35 表2-1-9.5 旋轉填充床其他應用 37 表3-1 本實驗錯流式旋轉填充床規格 50 表3-2矽油與水物性資料 52 表4-4-1在28oC環境下,不同水與油混合體積比下之平衡常數 108 表B 水吸收甲苯之實驗數據 147 表C矽油吸收甲苯實驗數據 149 表D矽油加水吸收甲苯實驗數據 150 表 F 經旋轉填充床收及之液體中,乳化層內水與油含量 161 表I揮發性有機物排放標準與管制 165 | |
| dc.language.iso | zh-TW | |
| dc.subject | 質傳 | zh_TW |
| dc.subject | 旋轉填充床 | zh_TW |
| dc.subject | 包覆 | zh_TW |
| dc.subject | 吸收 | zh_TW |
| dc.subject | 碰撞 | zh_TW |
| dc.subject | rotating packed beds | en |
| dc.subject | insertive-merging | en |
| dc.subject | collision | en |
| dc.subject | mass transfer | en |
| dc.subject | absorption | en |
| dc.title | 以矽油加水在旋轉填充床吸收甲苯之研究 | zh_TW |
| dc.title | Toluene Absorption by Silicone Oil with Water In a Rotating Packed Bed | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴怡德(Yi-Der Tai),林佳璋(Chia-Chang Lin),陳昱劭(Yu-Shao Chen) | |
| dc.subject.keyword | 旋轉填充床,吸收,質傳,碰撞,包覆, | zh_TW |
| dc.subject.keyword | rotating packed beds,absorption,mass transfer,collision,insertive-merging, | en |
| dc.relation.page | 165 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
