Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36075
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 曾四恭 | |
dc.contributor.author | Yuan-Wei Tsai | en |
dc.contributor.author | 蔡遠瑋 | zh_TW |
dc.date.accessioned | 2021-06-13T07:50:51Z | - |
dc.date.available | 2005-07-28 | |
dc.date.copyright | 2005-07-28 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-25 | |
dc.identifier.citation | Anderson, A. J. and Dawes, E. A. (1990). “Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates,” Microbiol., 54, 450-472.
Badri, N. D., Vinay, D., Ramesh, S., Lee, C. M. and Kerry, L. S. (1993). “Microbial Reduction of Sulfur Dioxide and Nitric Oxide,” Fuel, 72(12), 1705-1710. Brindle, K. and Stepheson, T. (1996). “Nitrification in a bubbleless oxygen mass transfer membrane bio reactors for the treatment of wastewater,” Biotechnology and Bioengineering, 34, 261-267. Brindle, K., Stepheson, T. and Semen, M. J. (1996). “Nitrification and oxygen utilization in a membrane aeration bioreactor,” Journal of membrane science, 144, 197-209. Chang, C. C. and Tseng, S. K. (1998a). “The Optimal Condition for Autotrophic Denitrification by Paracoccus denitrificans,” Journal of the Chinese Institute of Environmental Engineering, 8(3), 233-238. Chang, C. C. and Tseng, S. K. (1998b). “Immobilization of Alcaligenes eutrophus using PVA crosslinked with sodium nitrate,” Biotechnology Techniques, 12(12), 865-868. Chang, C. C., Tseng, S. K., and Huang, H. K. (1999). “Hydrogenotrophic Denitrification with Immobilized Alcaligenes eutrophus for Drinking Water Treatment,” Bioresources Technology, 69(1), 53-58. Charpentier, J., Florentz M. and David G. (1987). “Oxidation-reduction potential(ORP) regulation: a way to optimize pollution removal and energy saving in the low load activated sludge process,” Wat. Sci. Tech., 19, 645-655. Choi, J. and Lee, S. P. (1997). “Process Analysis and Economic Evaluation for Poly(3-hydroxybutyrate) Production by Fermentation,” Bioprocess Engineering, 17, 335-342. Choi, J. C., Shin, H. D. and Lee, Y. H. (2003). “Modulation of 3-hydroxyvalerate molar fraction in poly(3-hydroxybutyrate-3-hydroxyvalerate) using Ralstonia eutropha transformant co-amplifying phbC and NADPH generation-related zwf genes,” Enzyme and Microbial Technology, 32(1), 178-185. Cornibert, J. and Marchessault, R. H. (1972). “Physical properties of poly- -hydroxybutyrate. IV. Conformational analysis and crystalline structure,” Journal Mol. Biol., 71, 735-756. Daniel, S., Rene, H., Dieter, J., Marianne, H. and Dirk S. (2005). “The Presumptive Magnetosome Protein Mms16 Is a Poly(3-Hydroxybutyrate) Granule-Bound Protein (Phasin) in Magnetospirillum gryphiswaldense,” Journal of Bacteriology, April, 187(7), 2416-2425. Debus, O. (1995). “Transport and reaction of aromatics, O2 and CO2 within a membrane bound Biofilm in competition with suspended biomass,” Water Science and Technology, 31, 129-141. Debus, O. and Wanner, O. (1995). “Degradation of xylene by a biofilm growing on a gas-permeable memebrane,” Water Science and Technology, 26(3-4), 607-616. Doi, Y. (1990). “Microbial polyesters,” VCH publishers, New York. Dries, D., Liessens, J., Verstraete, W., Stevens, P., de Vos P. and de Ley J. (1988). “Nitrate Removal from Drinking Water by Means of Hydrogenotrophic Denitrifiers in a Polyurethane Carrier Reactor,” Water Supply, 6, 181-192. Fouratt, M. A., Rhodes, J. A., Smithers, C. M., Love, N. G. and Stevens, A. M. (2003). “Application of temporal gradient gel electrophoresis to the characterization of a nitrifying bioaugmentation culture,” FEMS Microbial Ecology, 43(2), 277-286. Gayle, B. P., Boardman, G. D., Sherrard, J. H. and Benoit, R. E. (1989). “Biological Denitrification of Water,” Journal of Environmental Engineering, 115(5), 930-943. Germonpre, R., Liessens, J., Verstraete, W. and Beernaert, S. (1992). “Methylotrophic and Hydrogenotrophic Denitrification at the Blankart Plant,” Water Supply, 10(3), 53-64. Ginocchio, J. (1984). “Nitrate Levels in Drinking Water are Becoming too High,” Water Treatment, 88(1058), 143-147. Gros, H., Schnoor, G. and Rutten, P. (1986). “Nitrate Removal from Groundwater by Autotrophic Microorganisms,” Water Supply, 4, 11-21. Gros, H., Schnoor, G. and Rutten, P. (1988). “Biological Denitrification Process with Hydrogen-Oxidizing Bacteria for Drinking Water Treatment,” Water Supply, 6, 193-198. Hein, S. and Tran, H. (1998). “Synechocyatis sp. PCC6803 Possesses a Two-component Polyhydroxyalkanoic Acid Synthase Similar to That of Anoxygenic Purple Sulfur Bacteria,” Arch. Microbiol, 170, 162-170. Henderson, R. A. and Jones, C. W. (1997). “Poly-3-hydroxyhutyrate Production by Washed Cells of Alcaligenes eutrophus; Purification, Characterisation and Potential Regulatory Role of Citrate Synthase,” Arch. Microbiol, 168, 486-492. Hyungjin, K and Krishna R. P. (1999). “Competive growth of Nocardia and Acinetobacter under anaerobic/aerobic batch operation,” Wat. Res., 34(10), 2667-2674. Ishizaki, A. and Tanka, K. (1990). “Batch Culture of Alcaligenes eutrophus ATCC 17697 Using Recycled Gas Closed Circuit Culture System,” Journal of Fermentation and bioengineering, 69(3), 170-174. Ishizaki, A. and Tanka, K. (1991). “Production of Poly-β-hyroxyutyric Acid from Carbon Dioxide by Alcaligenes eutrophus ATCC 17697,” Journal of Fermentation and bioengineering, 71(4), 254-257. J. Kurt, J., Friedrich, S. (1999). “Effects of Recombinant Modulation of The phbCAB Operon Copy Number on PHB Synthesis Rates in Ralstonia eutropha,” Journal of Biotechnology, 68, 49-60. Joanne, S. and Jiamin, T. (2003). “Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA sythase,” Journal of The Royal Society of Cemistry, 20, 445-457. Kalmbach, S., W. Manz, and U. Szewzyk (1997). “Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes,” Appl. Environ. Microbiol., 63, 4164-4170. Kichise, T., Fukui, T., Yoshida, Y. and Doi, Y. (1999). “Biosynthesis of polyhydroxyalkanoates (PHA) by recombinant Ralstonia eutropha and effects of PHA synthase activity on in vivo PHA biosynthesis,” International Journal of Biological Macromolecules, 25(1-3), June, 69 – 77. Kirsten S. J. and Annrli S. L. P. (1995). “Polyphosphate accumulation among denitrifying bacteria in activated sludge,” Environmental microbiology, 1, 161-168. Knowles, R. (1982). “Denitrification,” Microbiological Reviews, 46(1), 43-70. Koike, I. and Hattori, A. (1975). “Growth yield of denitrification bacterium, Pseudomonas denitrificans, under aerobic and denitrifying conditions,” Journal Gen. Microbial., 88, 1-10. Kraus, P. F. X. and Kutchan, T. M. (1995). “Molecular cloning and heterologous expression of a cDNA encoding berbamunine synthase, a C-O phenol-coupling cytochrome P450 from the higher plant Berberis stolonifera,” Proc. Natl. Acad. Sci., USA, 92, 2071-2075. Kurt, M., Dunn, I.J. and Bourne, J.R. (1987). “Biological Denitrification of Drinking Water Using Autotrophic Organisms with H2 in a Fluidized-Bed Biofilm Reactor,” Biotechnol. Bioeng., 29, March, 493-501. Lee, S. Y. (1996). “Review Bacterial Polyhydroxyalkanoates,” Biotechnol. Bioeng., 49(1), 1-14. Lee, Y. H., Kang, M. S. and Jung, Y. M. (2000). “Regulating the Molar Fraction of 4-Hydroxybutyrate in Poly(3-Hydroxybutyrate-4-hydroxybutyrate) Biosynthesis by Ralstonia eutropha Using Propionate as a Stimulator,” Journal of Bioscience and Bioengineering, 89(4), 380-383. Lie, E. and Welander, T. (1994). “Influence of dissolved oxygen and oxidation-reduction potential on the denitrification rate of activated sludge,” Water Quality International ’94-Conference Preprint Book 1, 73-82. Liessebs, J., Germonpre, R., Kerster, I., Beernaert, S. and Verstraette, W. (1993). “Removing Nitrate With a Methylotrophic Fluidized Bed: Microbiological Water Quality,” Journal of AWWA, April, 155-161. Livington, A. G. (1993a). “A novel membrane bioreactor for detoxifying industrial wastewater (1): Biodegradation of phenol in a synthetically concocted wastewater,” Biotechnology and Bioengineering, 41, 915-926. Livington, A. G. (1993b). “A novel membrane bioreactor for detoxifying industrial wastewater (1): Biodegradation of 3-chloronitrobenzene in a industrially produced wastewater,” Biotechnology and Bioengineering, 41, 927-936. Lloyd, D. (1993). “Aerobic denitrification in soils and sediments: from fallacies to facts,” Tree, 8 (10), 352–355. Madison, L. L. and Huisman, G. W. (1999). “Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic,” Microbiology and Molecular Biology Reviews, March, 63(1), 21-53. Mateju, V., Cizinska, S., Krejci, J. and Lanoch, T. (1992). “Biological Water Denitrification – a Review,” Enzyme Microb. Technol., 14, March, 170-183. McCleaf, P. R. and Schroeder, E. D. (1995). “Denitrification using a membrane-immobilized biofilm,” Journal of Am. Water Works Assn., 87, 77-86. Meiklejohn, J. (1940). “Aerobic Denitrification,” Ann. Appl. Biol., 558-573. Muyzer, G. and Ramsing, N. B. (1995). “Molecular methods to study the organization of microbial communities,” Water Sci. Tech., 32, 1-9. Payne, W. J. (1981). “Denitrification,” John Wiley and sons. Poirier, Y., C. Nawrath and C. Someerville (1995). “Production of poly-hydroxyalkanoates, a family of biodegradable plastic and elastomers, in bacteria and plants,” Biotechnology, 13, 142-150. Reddy, C.S.K., Ghai, R., Rashmi and Kalia, V.C. (2003). “Polyhydroxyalkanoates: an overview,” Bioresource Technology, April, 87(2), 137-146 Regina, V., Alexander, S. and Bernd, H.A. (2000). “Analysis of in vivo Substrate Specificity of the PHA Synthase from Ralstonia eutropha: Formation of Novel Copolyesters in Recombinant Escherichia coli.,” FEMS Microbiology Letters, 182, 111-117. Rivera, I. N., Lipp, E. K., Gil, A., Choopun, N., Huq, A. and Colwell, R. R. (2003). “Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae O1 and O139 from aquatic ecosystems,” Environmental Microbiology, 5(7), 599-606. Rott, U. and Lamberth, B. (1992). “Subterranean Denitrification for the Treatment of Drinking Water,” Water Supply, 10(3), 111-120. Rutten, P. and Schnoor, G. (1992). “Five Years’ Experience of Nitrate Removal form Drinking Water,” Water Supply, 10(3), 183-190. Schlotelburg, C., Wintzingerode, F., Hauck, R., Hegemann, W. and Gobel, U. B. (2001). “Bacteria of an anaerobic 1,2-dichloropropane-dechlorinating mixed culture are phylogenetically related to those of other anaerobic dechlorinating consortia,” International Journal Syst. Evol. Microbiol, 50, 1505-1511. Smita S. and Ashok K. S. (2005). “Studies on phosphate uptake by Acinetobacter calcoaceticus under aerobic condition,” Enzyme and Microbial Technology, 36, 362-368. Steinbüchel, A. and Fuchtenbusch, B. (1998). “Bacteria and other biological systems for polyester production,” TIBTECH, 16, 419-427. Stouthamer, A. H. (1976). “Biochemistry and genetics of nitrate reductase,” Adv. Microb. Physiol., 14, 315-375. Tanaka, K., Ishizaki, A. and Stanbury, P. E. (1992). “Accumulation of Polyphosphate and Substrate Gas Utilization Efficiency in PHB Accumulation Phase of Autotrophic Batch Culture of Alcaligenes eutrophus ATCC 17697,” Journal of Fermentation and Bioengineering, 74(5), 288-291. Tanaka, K. and Ishizaki, A. (1994). “Production of Poly-D-3-hydroxybutyruc Acid from Carbon Dioxide by a Two-Stage Culture Method Employing Alcaligenes eutrophus ATCC 17697,” Journal of Fermentation and Bioengineering, 77(4), 425-427. Tseng, S. K. and Chang, C. C. (2000). “Immobilization of Alcaligenes eutrophus Using PVA Crosslinked with Sodium Nitrate for Hydrogenotrophic Denitrification in Drinking Water Pretreatment,” 1st World Water Congress of The International Water Association, July 3-7, Paris 2000. Tseng, S. K., Chang, C. C. and Kao, G. L. (2000). “Nitrate Removal from Water by Autotrophic Denitrification Biofilter,” 12th IWSA-ASPAC Region Conference & Exhibition, Laksi Bangkok, Thailand, 354-359. Valentin, H.E. and A. Steinbüchel (1995). “Accumulation of poly(3-hydroxybutyric acid- co-3-hydroxyvaleric acid-co-4-hydroxyvaleric acid) by mutants and recombinant strains of Alcaligenes eutrophus,” Journal Environ. Polym. Degrad., 3, 169-175. Vaneechoutte, M., Peter, K., Thierry, De B., Enevold, F. and Gerda, V. (2004). “Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage in cluding Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov.,” International Journal of Syntematic and Evolutional Microbiology, 54, 317-327. Wareham, D. G., Hall, K. J. and Mavinic, D. S. (1993). “Real-time control of aerobic-anoxic sludge digestion using ORP,” Journal of Environmental Engineering, 119(1), 120-136. Yamamoto, K. and Win, K. M. (1991). “Tanney wastewater treatment using a sequencing batch membrane reactor,” Water Science and Technology, 23, 639-1648. 何俊明(2003),”利用自營性薄膜生物反應槽進行水源除氮之研究”,國立台灣大學環境工程學研究所,博士論文。 張育傑(1999),”利用新式薄膜反應槽去除廢水中氮之研究”,國立台灣大學環境工程學研究所,博士論文。 張志誠(1997), “自營性生物脫氮法去除水源中硝酸鹽之研究”,國立台灣大學環境工程學研究所,博士論文。 黃培銘(2005), ”Ralstonia eutropha 同時脫氮及合成PHB最適培養條件之研究”,國立台灣大學環境工程學研究所,碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36075 | - |
dc.description.abstract | 本研究目的為探討 Wautersia eutropha 在自營脫硝狀態下,脫硝反應與PHB累積行為之相關性。該菌株已經證實在好氧環境及脫硝反應行無氧呼吸件下,均可大量累積PHB。
本研究以矽膠管反應槽與血清瓶進行批次特性試驗,結果顯示當Wautersia eutropha 進行脫硝反應時以氫氣作為能源、碳酸氫鹽及二氧化碳作為碳源。該菌株會先將硝酸鹽降解為亞硝酸鹽,之後再將亞硝酸鹽轉化為氮氣,為兩階段式的反應途徑。此外,Wautersia eutropha 在進行脫硝作用時,若菌體內有PHB累積,則會優先利用PHB作為碳源,造成反應初期細胞內PHB含量降低。批次試驗至亞硝酸鹽脫硝末期,已有少量的PHB合成;在脫硝反應結束後,該菌株才開始快速合成PHB。本研究最高之PHB累積量達污泥乾重之5.7 %,遠小於異營狀態下之累積量。脫硝反應結束後停止供氫,菌體不僅停止合成PHB,還會降解PHB作為菌株生存之能源及碳源;系統一旦恢復供氫,菌體即回復PHB之合成作用。 在初始C/N比為1時,可獲得良好的比脫硝速率(0.15 mg-N d-1 mg-1-biomass),此時最佳的比PHB合成速率為0.002 mg-PHB d-1 mg-1-biomass。改變不同基質濃度負荷(固定初始C/N比為1),在基質負荷濃度為300 mg/l時,有最佳之比脫硝速率。而改變基質負荷則對最終PHB累積量不會造成明顯的影響。 氨氮較硝酸鹽適合作為 Wautersia eutropha 細胞合成之氮源,添加氨氮則有助於提升菌體濃度,並提高脫硝速率及PHB合成速率。 | zh_TW |
dc.description.abstract | This study is to investigate the relationship between denitrification and behaviors of PHB accumulation by Wautersia eutropha in autotrophic systems. This study concluded that Wautersia eutropha accumulate PHB by a significant amount under both aerobic and anoxic conditions.
This research based on batch experiments with membrane-feeding substrate bioreactor (MFSB) and serum bottles shows that Wautersia eutropha proceed two-stage denitrification which with nitrite as an intermediate by using hydrogen as a energy source and bicarbonate as a carbon source. It was also observed that Wautersia eutropha utilize PHB prior as a carbon source during denitrification reactions, which lowers the PHB level in cells. The largest accumulated amount of PHB in this study is 5.7 % of the dry weight of cells, however, much smaller than those with heterotrophic incubations. When the hydrogen supplied was stopped at the end of the denitrification reaction, Wauterrsia eutropha used PHB instead of accumulating it. As soon as the hydrogen returned to system, Wautersia eutropha immediately went back to accumulate PHB. The system achieves highest nitrate removal and PHB accumulation at a C/N ratio of 1.0 and both nitrate and bicarbonate concentration are set to be 300 mg/l. In this given condition, the specific denitrification rate is 0.15 mg-N/day/mg-biomass, and the specific PHB accumulated rate is 0.002 mg-PHB/day/mg-biomass, also, the PHB accumulation shows no connections to nitrate and bicarbonate levels at this study. The results of this study also suggest that ammonia, which raise the specific denitrification and the specific PHB accumulation, is a better nitrogen source than nitrate and nitrite for incubation of Wautersia eutropha. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:50:51Z (GMT). No. of bitstreams: 1 ntu-94-R92541102-1.pdf: 3172137 bytes, checksum: 913cf545d27f891d4ec3b59f892efebd (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 摘要 ……………………………………………………………………….…Ⅰ
英摘 ……………………………………………………………………… Ⅱ 目錄 ………………………………………………………………………… Ⅳ 表目錄 …………………………………………………………………....... Ⅶ 圖目錄 …………………………………………………………………….…Ⅷ 第一章 緒論 ……………………………………………………...………… 1 1-1 研究源起 …………………………………………………………. 1 1-2 研究目的 ……………………………………………………….… 2 1-3 研究內容 …………………………………………………………. 3 第二章 文獻回顧 …………………………………………………………... 5 2-1 微生物脫硝作用與原理 …………………………………………… 5 2-1-1 脫硝作用(Denitrification)………………………………..… 5 2-1-2 脫硝作用原理與生化反應 ………………………………... 6 2-2 自營性脫硝作用 …………………………………………………… 9 2-3 影響脫硝反應的因子 …………………………………………….. 14 2-3-1 溶氧 ………………………………………………………. 14 2-3-2 pH …………………………………………………………… 16 2-3-3 溫度 ……………………………………….……………… 18 2-3-4 ORP ………………………………………………………… 19 2-3-5 能量來源 …………………………………………………. 20 2-3-6 其他氮氧化物 …………………………………………… 23 2-3-7 抑制劑 ………………………………………………….… 24 2-4 PHB簡介 ………………………………………………………..… 24 2-4-1 PHB的特性與代謝途徑 ………………………………… 24 2-4-2 細菌合成PHB …………………………………………… 28 2-4-3 PHB之發展與應用 ……………………………………… 30 2-5 Wautersia eutropha特性 ………………………………………...… 32 2-6 矽膠管反應槽之技術與應用 …………………………………… 35 2-6-1 薄膜生物反應槽之種類 ………………………………… 35 2-6-2 利用矽膠管作為氫氣自營性生物脫硝反應槽之供氣系… 39 2-7 分子生物技術於生物反應槽菌相鑑定之應用 ………………….. 41 第三章 材料與方法 ……………………………………………………… 46 3-1 研究內容 ………………………………………………………..… 46 3-2 研究方法 ………………………………………………………… 47 3-2-1 菌種來源 ………………………………………………… 47 3-2-2 菌種馴養 ……………………………………………….… 47 3-2-3 批次試驗 …………………………………………………. 49 3-3 分析方法 ………………………………………………………… 52 3-3-1 水質分析 ………………………………………………… 52 3-3-2 污泥分析(PHB之分析)………………………………… 54 3-3-3 菌相觀察 …………………………………………………. 56 3-3-4 反應槽微生物菌種分析 ………………………………… 57 3-4 研究設備 ………………………………………………………… 66 第四章 結果與討論 …………………………………………………….… 68 4-1 菌種馴養 ………………………………………………………… 68 4-2 Wautersia eutropha 脫硝及累積PHB之批次特性實驗 ………… 72 4-2-1 Wautersia eutropha 脫硝反應 ………………………….. 72 4-2-2 Wautersia eutropha 脫硝反應與PHB之累積相關性 ….… 74 4-2-3 Wautersia eutropha 脫硝反應之氫氣影響試驗 ………… 78 4-2-4 Wautersia eutropha PHB累積之氫氣影響試驗 ………… 81 4-3 C/N比對Wautersia eutropha 脫硝與PHB累積之影響 ………… 85 4-3-1 矽膠管反應槽批次試驗 ……………………………….… 85 4-3-1-1 固定碳量,不同C/N比之批次試驗 …………… 85 4-3-1-2 固定氮量,不同C/N比之批次試驗 ………....… 90 4-3-2 血清瓶批次試驗 ……………………………………….… 94 4-3-2-1 固定碳量,不同C/N比之批次試驗 …………… 95 4-3-2-2 固定氮量,不同C/N比之批次試驗 …………… 99 4-4 不同基質濃度負荷對脫硝與PHB累積之影響 ………………… 102 4-5 氨氮對 Wautersia eutropha 脫硝與PHB累積之影響 ……… 106 4-6 微生物菌相觀察 ………………………………………………… 108 4-7 以分子生物技術鑑定反應槽菌相 ……………………………… 110 第五章 結論與建議 ………………………………………………………116 5-1 結論 …………………………………………………………….…116 5-2 建議 …………………………………………………………….… 118 參考文獻 ………………………………………………………………..… 119 附錄1 ………………………………………………………………………. 125 附錄2 ……………………………………………………………………… 130 附錄3 ………………………………………………………………………. 143 | |
dc.language.iso | zh-TW | |
dc.title | Wautersia eutropha 自營脫氮及合成PHB最適培養條件之研究 | zh_TW |
dc.title | Study on Optimized Conditions for Denitrification and PHB Accumulation by Wautersia eutropha in Autotrophic Systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李志源,張育傑,張志誠 | |
dc.subject.keyword | 脫硝,自營脫硝,Wautersia eutropha,PHB, | zh_TW |
dc.subject.keyword | denitrification,autotrophic,Wautersia eutropha,PHB, | en |
dc.relation.page | 156 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
Appears in Collections: | 環境工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-94-1.pdf Restricted Access | 3.1 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.