Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36070
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良鴻(Liang-Hung Lu)
dc.contributor.authorYu-Te Liaoen
dc.contributor.author廖育德zh_TW
dc.date.accessioned2021-06-13T07:50:45Z-
dc.date.available2007-07-28
dc.date.copyright2005-07-28
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citation[1] J. R. Long and M. A. Copeland, “The modeling, characterization, and design of monolithic inductors for silicon RF ICs,” IEEE J. Solid-State Circuits, vol. 32, pp. 357–369, Mar. 1997.
[2] H. G. Booker, Energy in Electromagnetism, London, New York: Peter Peregrinus on behalf of the Institution of Electrical Engineers, 1982.
[3] C.P. Yue, S.S. Wong,” On-chip spiral inductors with patterned ground shields for Si-based RF ICs,” IEEE J. Solid-State Circuits, Vol. 33, no. 5, pp. 743-752, May, 1998.
[4] J.M. Lopez-Villegas, J. Samitier, C. Cane, P. Losantos, J. Bausells,” Improvement of the quality factor of RF integrated inductors by layout optimization” IEEE Trans. Microwave Theory and Techniques, vol. 48, no. 1, pp. 76-83, Jan., 2000.
[5] Chih-Chun Tang, Chia-Hsin Wu, Shen-Iuan Liu,” Miniature 3-D Inductors in Standard CMOS Process,” IEEE J. Solid-State Circuits, Vol. 37, no. 4, pp. 471-480, April, 2002.
[6] Y. Yoshihara, H. Sugawara, H. Ito, K. Okada, K.Masu,” A wide tuning range CMOS VCO using variable inductor,” in IEEE Silicon Monolithic Integrated Circuits in RF Systems, MI, pp. 278–281, Sept. 2004
[7] W.H. Holmes, W.E.Heinlein, S. Grutzmann,” Sharp-cutoff low-pass filters using floating gyrators,” IEEE J. Solid-State Circuits, Vol. 4, no. 1, pp. 38-50, Feb., 1969.
[8] U. Yodprasit and J. Ngarmnil, “Q-enhancing technique for RF CMOS active inductor”, IEEE Int. Symp. on Circuits and Systems, 2000, pp. 589-592.
[9] Yue Wu, M. Ismail, H. Olsson,” A novel CMOS fully differential inductorless RF bandpass filter,” IEEE Int. Symp. on Circuits and Systems, 2000, pp. 149-152.
[10] A. Thanachayanont and A. Payne, “VHF CMOS integrated active inductor,” Electron. Lett., vol. 32, pp. 999–1000, May 1996.
[11] Chao-Chih Hsiao, Chin-Wei Kuo, Chien-Chih Ho, and Yi-Jen Chan,“Improved quality-factor of 0.18μm CMOS active inductor by a feedback resistance design,”IEEE Microwave and Wireless Components Lett., vol. 12, pp. 467-469, Dec. 2002.
[12] K. Miyaguchi, M. Hieda, K. Nakahara, H. Kurusu, M. Nii, M. Kasahara, T. Takagi, and S. Urasaki,”An ultra-broad-band reflection-type phase-shifter MMIC with series and parallel LC circuits,” IEEE Trans. Microwave Theory and Techniques, vol. 49, no. 12, pp. 2446-2452, Dec. 2001.
[13] A. S. Nagra, and R. A. York, “Distributed analog phase shifters with low insertion loss,” IEEE Trans. Microwave Theory and Techniques, vol. 47, no. 9, pp. 1705-1711, Sept. 1999.
[14] P.-Y. Chen, T.-W. Huang, H. Wang, Y.-C. Wang, C.-H. Chen, and P.-C. Chao, “K-band HBT and HEMT monolithic active phase shifters using vector sum method,” IEEE Trans. Microwave Theory and Techniques, vol. 52, no. 5, pp. 1414-1424, May 2004.
[15] D. Viveiros, Jr., D. Consonni, and A. K. Jastrzebski, “A tunable all-pass MMIC active phase shifter,”IEEE Trans. Microwave Theory and Techniques, vol. 50, no. 8, pp. 1885-1889, Aug. 2002.
[16] H.Zarei, D.J. Allstot, “A low-loss phase shifter in 180 nm CMOS for multiple-antenna receivers,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2004, pp. 392-534.
[17] H. Hayashi, M. Muraguchi, Y. Umeda, T. Enoki, ”A high-Q broad-band active inductor and its application to a low-loss analog phase shifter,” IEEE Trans. Microwave Theory and Techniques, vol. 44, no. 12, pp. 2369-2374, Dec. 1996.
[18] M. Rodwell, M. Kamegawa, R. Yu, M. Case, E. Carman, K.S. Giboney, “GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling” IEEE Trans. Microwave Theory and Techniques, vol. 39, pp. 1194-1204, July 1991.
[19] S. Hamedi-Hagh, C. Salama, “CMOS wireless phase-shifted transmitter,” IEEE J. Solid-State Circuits, vol. 39, pp. 1242-1252, Aug. 2004.
[20] F. Ellinger, R. Vogt, and W. Bachtold, “Ultra compact, low loss, varactor tuned phase shifter MMIC at C-band,” IEEE Microwave and Wireless Components Letters, vol. 11, no. 3, pp. 104-105, March 2001.
[21] D. Pozar, “Microwave Engineering”, second Edition.
[22] K. Nishikawa, T. Tokumitsu, and I. Toyoda,“Miniaturized Wilkinson power divider using three-dimensional MMIC technology”, IEEE Microwave and Guided Wave Letters, vol. 6, no. 10, pp.372-374, Oct. 1996.
[23] C. Ng, M. Chongcheawchamnan, and I. Robertson,“Lumped distributed hybrids in 3D-MMIC technology,” IEE Proc., Microwaves, Antennas and Propagation, vol. 151, pp. 370-374, Aug. 2004.
[24] M. C. Scardelletti, G. E. Ponchak, and T. M. Weller, “Miniaturized Wilkinson power dividers utilizing capacitive loading”, IEEE Microwave and Wireless Components Letters, vol. 12, no. 1, pp.6-8, Jan. 2002.
[25] Hsin-Chia Lu and Tah-Hsiung Chu,”Multiport scattering matrix measurement using a reduced-port network analyzer,”IEEE Trans. Microwave Theory and Techniques, vol. 51,no. 5, pp. 1525-1533, May 2003.
[26] C. Seguinot, P. Kennis, J.-F Legier, F. Huret, E. Paleczny, L. Hayden,” Multimode TRL. A new concept in microwave measurements: theory and experimental verification,” IEEE Trans. Microwave Theory and Techniques, vol. 46, no. 5, pp. 536-542, May 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36070-
dc.description.abstract隨著無線網路裝置的需求增加,低成本及高整合性是射頻前端系統實現的一種趨勢。由於深次微米製程技術的進展,CMOS 製程更廣泛地應用在高效能低成本的射頻積體電路的設計中。但在微波頻段的類比相位轉換電路以及功率分波器的應用中,因為傳輸線的大量使用,不利於整合在單一晶片中,導致了訊號強度的不平均以及相位誤差。爲縮小面積,利用被動元件模型取代傳輸線的方式常被應用於微波分散電路的設計中。卻因CMOS製程中缺乏高Q值被動元件,而產生極大的訊號損失及非理想效應。在本論文中,採用高Q值的主動電感來取代螺旋電感,而達到減少訊號損失及縮小面積的目的。在0.18-um CMOS製程下實現類比相位轉換電路,Wilkinson 功率分波器,及90度相位偶合器微波積體電路。
此類比相位轉換器電路設計,主要是利用主動電感取代傳輸線,使其具有較大的相位調整範圍、低損益及小面積的優點。經由S參數的量測,在3.5GHz-4.5GHz的頻段中,可有360度的相位控制範圍,同時S21皆小於1.1dB且S11小於-10dB。由於不需使用分散式元件和螺旋電感,其晶片面積僅 400x200 um2.
 在標準CMOS 製程下製作的4.5 GHz的 Wilkinson功率分波器,在16.7mW的直流功率下,其S參數量測值如下: S21=3.16dB,S31=3.3dB, S11、S23、S22、S33 <-15dB。晶片面積(不含Pad)為150x100 um2,極適合於單磊晶微波系統整合的應用。
此外,4.4GHz的90度相位偶合器的設計同樣能達到極小的面積及低損益的特性。晶片面積為640x720 um2。於 25.2 mW 的功率消耗下,其損益為0.23dB,並且保持良好的反射損失及各端間的阻絕。
zh_TW
dc.description.abstractWith the increasing demands on wireless communication devices, the issues of the low-cost and high-level integration are the trend for the implementation of RF front-end system. With recent advances in deep submicron fabrication process, CMOS technology is showing the potential to meet these requirements. Due to the use of transmission lines, it is not practical to integrate the microwave hybrids and phase shifters monolithically. Therefore, the lumped-element replacement has been proposed to reduce the chip size. Though the minimized chip size can be achieved, they still suffer from the loss due to low Q-factor passive components in standard CMOS process. In this thesis, active inductors are employed to substitute the spiral inductors, providing high Q-factors, tunable inductance and miniaturized chip area. Based on this concept, the analog phase shifter, Wilkinson power divider and quadrature hybrid are implemented in the standard 0.18-um CMOS process for monolithic microwave integrated circuit (MMIC) applications.
By employing active inductors in the synthetic transmission line architecture, the phase shifter exhibits a wide phase control range, low insertion loss and miniaturized chip area. Characterized by the S-parameter measurement, the fabricated circuit demonstrates an insertion loss less than 1.1 dB within the 360 phase shift while maintaining a return loss better than 10 dB from 3.5 to 4.5 GHz. Due to the absence of distributed elements and spiral inductors, the area of the phase shifter core is 400x200 um2. The power divider is designed at a center frequency of 4.5 GHz for equal power dividing with all ports matched to 50 ohm. Drawing a dc current of 9.3 mA from a 1.8-V supply voltage, the fabricated circuit exhibits an insertion loss less than 0.16 dB and a return loss better than 30 dB at the center frequency while maintaining good isolation between the output ports. The active area of the miniaturized Wilkinson power divider is 150x100 um2, which is suitable for system integration in monolithic microwave integrated circuit (MMIC) applications.
For the design of a 4.4-GHz coupler, the total chip area including the pad frame is 640x720 um2, while the active area only occupies 400x200 um2. Consuming a dc power of 25.2 mW from a 1.8-V supply voltage, the fabricated circuit exhibits an insertion loss of 0.23 dB while maintaining good return loss and port isolation at the center frequency.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:50:45Z (GMT). No. of bitstreams: 1
ntu-94-R92943094-1.pdf: 1657533 bytes, checksum: 0aa708534ad436bc9888689a4a741c58 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAcknowledgments III
Abstracts V
Table of Contents IX
List of Figures XI
List of Tables XIV
Chapter1 Introduction 1
1.1 Motivation 1
1.2 Overview of the thesis 2

Chapter2 Basic Concepts of CMOS Active Inductors 3
2.1 Passive Inductor Design in RF ICs 3
2.1.1 Basic concepts of RF inductors 3
2.1.2 Quality Factors of RF Inductors 5
2.1.3 Some Special Structures for High Performance Inductor Design 6
2.2 Introduction to Active Inductors 7
2.2.1 Basic theory of active inductors 7
2.2.2 Compensation Methodologies of High Q-factor Active Inductors 11
2.3 Considerations of Active Inductor Design 16
2.4 Noise Analyses of Active Inductors 17

Chapter 3 CMOS Analog Phase Shifter Design 19
3.1 Motivation 19
3.2 Reviews of analog phase shifter 19
3.2.1 The Reflective Type Phase Shifter 20
3.2.2 The Distributed Type Analog Phase Shifter 22
3.2.3 The Active Phase Shifter Using a Vector-Sum Method 24
3.2.4 The Tunable All-Pass Phase shifter 25
3.3 Proposed Phase Shifter Utilizing Active Inductors 27
3.3.1 Lumped Element Replacement of Transmission Lines 27
3.3.2 Noise Analysis of the T-network Replacement 32
3.3.3 The Design of Analog Phase Shifter Utilizing Active Inductors 35
3.3.4 The Experimental Results of Proposed Phase Shifter 36
3.4 Discussion and Conclusion 40

Chapter 4 Miniaturized CMOS Wilkinson Power Divider and Hybrid Coupler Design 41
4.1 Introduction 41
4.2 Basics of Wilkinson Power Divider and Hybrid Couplers 41
4.2.1 Basics of the Wilkinson Power divider 42
4.2.2 Basics of the Hybrid Coupler 43
4.2.3 The Developed Methods for Power Dividers Miniaturization 45
4.3 Proposed Method for Active Wilkinson Power Divider Design 47
4.3.1 The Circuit Design of Wilkinson Power Divider 49
4.3.2 The Quadrature Hybrid Coupler Circuit Design 50
4.4 Multi-port Measurement Methods and Set-up 51
4.5 Experimental Results 53
4.5.1 The experimental Results of the Wilkinson Power Divider 53
4.5.2 The experimental Results of the Quadrature Hybrid 57
4.6 Discussion and Conclusion 59

Chapter 5 Conclusion 61
Appedix 63
Bibliography 69
dc.language.isoen
dc.subject極小化zh_TW
dc.subject主動電感zh_TW
dc.subject偶合器zh_TW
dc.subject分波器zh_TW
dc.subjectactive inductoren
dc.subjecthybriden
dc.subjectwilkinson power divideren
dc.subjectphase shifteren
dc.titleCMOS主動電感於單磊晶微波積體電路極小化之應用與實現zh_TW
dc.titleApplication and implementation of monolithic microwave integated circuits with CMOS active inductorsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃俊郎(Jiun-Lang Huang),陳怡然(Yi-Jan Emery Chen)
dc.subject.keyword主動電感,偶合器,分波器,極小化,zh_TW
dc.subject.keywordactive inductor,phase shifter,wilkinson power divider,hybrid,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2005-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved