請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36051完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張樹城(Shu-Cheng Chang) | |
| dc.contributor.author | Shu-Li Shieh | en |
| dc.contributor.author | 謝淑莉 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:50:23Z | - |
| dc.date.available | 2011-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-21 | |
| dc.identifier.citation | [1] Stefano Pigola, Marco Rigoli, Alberto G. Setti, Vanishing and Finiteness Results in Geomeric Analysis - A generalization of the Bochner Technique. Birkh auser Verlag AG. (2008), 27-58.
[2] R. Schoen, S.-T. Tau, Lectures on Di erential Geometry. International Press (1994), 1-30. [3] Bennet Chow, Peng Wu, Lei Ni, Hamilton's Ricci Flow. AMS Science Press (2006) [4] Manfredo Perdig~ao do Carmo. Riemannian Geometry. Birkh auser (1993) [5] Karsten Grove, Peter Peterson, Comparison Geometry. Mathematical Science Research Institute Publications (1997), 221-259. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36051 | - |
| dc.description.abstract | 比較定理主要是將任意可微分流形上的一些量與其他流形(如常數曲率流形)作比較。主要有均曲率, Hessian, Laplacian 及體積比較,並且有數種不同證明方法。
本文將敘述比較定理的內容以及其間的關係,並嘗試應用。 | zh_TW |
| dc.description.abstract | Comparison theorems are mainly to compare some quantities in an arbitrary di erential manifold with other manifolds (usually with space forms). The main comparisons are about mean curvature, Hessian, Laplacian and volume, and there are various ways of proof.
In this paper, I would like state the theorems and relations between them, and try to give some applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:50:23Z (GMT). No. of bitstreams: 1 ntu-100-R95221009-1.pdf: 1398153 bytes, checksum: 0d1696a3f248b6c7a1592d60bdde7ee9 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | English Abstract 2
Chinese Abstract 3 Chapter 1 Comparison Theorems 4 Chapter 2 Applications 15 Bibliography 18 | |
| dc.language.iso | en | |
| dc.subject | Cheng最大半徑球定理 | zh_TW |
| dc.subject | 比較定理 | zh_TW |
| dc.subject | Myer定理 | zh_TW |
| dc.subject | Laplacian比較 | zh_TW |
| dc.subject | comparison theorem | en |
| dc.subject | Laplacian comparison | en |
| dc.title | Laplacian 比較定理及其應用 | zh_TW |
| dc.title | Laplacian Comparison Theorem and its Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王藹農(Ai-Nung Wang),陳瑞堂(Jui-Tang Chen) | |
| dc.subject.keyword | 比較定理,Laplacian比較,Myer定理,Cheng最大半徑球定理, | zh_TW |
| dc.subject.keyword | comparison theorem,Laplacian comparison, | en |
| dc.relation.page | 18 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
