請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36018完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李水盛(Shoei-Sheng Lee) | |
| dc.contributor.author | Hsiao-Ching Lin | en |
| dc.contributor.author | 林曉青 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:49:49Z | - |
| dc.date.available | 2021-07-21 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-21 | |
| dc.identifier.citation | 第一部分
1. Lee, S. S.; Lin, H. C.; Chen, C. K. Acylated flavonol monorhamnosides, α-glucosidase inhibitors, from Machilus philippinensis Merr. Phytochemistry 2008, 69, 2347–2353. 2. Seger, C.; Godejohann, M.; Tseng, L. H.; Spraul, M.; Girtler, A.; Sturm, S.; Stuppner, H. LC-DAD-MS/SPE-NMR hyphenation. A tool for the analysis of pharmaceutically used plant extracts: identification of isobaric iridoid glycoside regioisomers from Harpagophytum procumbens. Anal. Chem. 2005, 77, 878–885. 3. Huang, T.C. (Ed.), 1996. Flora of Taiwan, second ed., vol. 2. Editorial Committee of the Flora of Taiwan, Taipei, pp. 481–483. 4. Komae, H., Hayashi, N. Terpenes from Actinodaphne, Machilus and Neolitsea species, Phytochemistry 1972 , 11, 1181–1182 5. Cheng, M. J.; Jayaprakasam, B.; Ishikawa, T.; Seki H.; Tsai, I. L.; Wang, J. J.; Chen, I. S. Chemical and Cytotoxic Constituents from the Stem of Machilus zuihoensis. Helv. Chim. Acta. 2002 , 85, 1909–1914. 6. Chung, Y. C.; Cheng, M. J.; Chiang, Y. J.; Baic, J. C.; Chiuc, C. T.; Lind, R. J.; Hsuie, Y. R.; Lo, W. L. Chemical constituents from the leaves of Machilus zuihoensis Hayata var. mushaensis (Lu) Y.C. Liu. Nat. Prod. Res. 2009, 23, 871–875. 7. Cheng, M. J.; Tsai, I. L.; Lee, S. J.; Jayaprakasam, B.; Chen, I. S. Steryl epoxide, secobutanolide and butanolides from the stem wood of Machilus zuihoensis Phytochemistry 2005, 66, 1180–1185. 8. Tsai, I. L.; Chen, J. H.; Duh, C. Y.; Chen, I. S. Cytotoxic neolignans and butanolides from Machilus obovatifolia. Planta Med. 2001, 67, 559–561. 9. Karikome, H.; Mimaki, Y.; Sashida, Y.; A butanolide and phenolics from Machilus thunbergii. Phytochemistry 1991, 30, 315–319. 10. Lee, S. S.; Lin, Y. S.; Chen, C. K. Three Adducts of Butenolide and Apigenin Glycoside from the Leaves of Machilus japonica. J. Nat. Prod. 2009, 72, 1249–1252. 11. Park, B.Y.; Min, B.S.; Kwong, O.K. Increase of caspase-3 activity by lignans from Machilus thunbergii in HL-60 cells. Biol. Pharm. Bull. 2004, 27, 1305–1307. 12. Tomita, M.; Lu, S. T.; Lan, P. K.; Lin, F. M. Studies on the alkaloids of Formosan lauraceous plants. V. alkaloids of litsea cubeba person. Yakugaku Zasshi. 1965, 85, 593–596. 13. Li, G.; Lee, C. S.; Woo, M. H.; Le, S. H.; Chang, H. W.; Son, J. K. Lignans from the bark of Machilus thunbergii and their DNA topoisomerases I and II inhibition and cytotoxicity. Biol. Pharm. Bull. 2004, 27, 1147–1150. 14. Yu, Y. U.; Kang, S. Y.; Park, H. Y.; Sung, S. H.; Lee, E. J.; Kim, S. Y.; Kim, Y. C. Antioxidant lignans from Machilus thunbergii protect CCl4-injured primary cultures of rat hepatocytes. J. Pharm. Pharmacol. 2000, 52, 1163–1170. 15. Ycitaka Sashida, H. S.; Oohara, M. Lignans from Machilus Thunbergii. Phytochemistry 1987, 26, 1513–1516. 16. Ma, C. J.; Sung, S. H.; Kim, Y. C. Neuroprotective lignans from the bark of Machilus thunbergii. Planta Med. 2004, 70, 79–80. 17. Moon, H. I.; Chung, H. J. Meso-dihydroguaiaretic acid from Machilus thunbergii SIEB et Zucc., and its effects on the expression of matrix metalloproteinase cause by ultraviolet irradiated cultured human keratinocyte cells (HaCaT). Biol. Pharm. Bull. 2005, 28, 2176–2179. 18. Miyazawa, M. ; Okuno, Y.; Oshiro, K.; Kasahara, H.; Shimamura, H.; Nakamura, S.; Kameoka, H. Suppression of the SOS-inducing activity of Trp-P-1 and aflatoxin B1 by Meso-dihydroguaiaretic acid from Machilus thunbergii in the Salmonella typhimurium test. Biosci. Biotech. Biochem. 1998, 62, 1425–1427. 19. Lairini, K.; Ruiz-Rubio, M. Detection of tomatinase from Fusarium oxysporum sp. lycopersici in infected tomato plants. Phytochemistry, 1998 , 48, 1371–1376. 20. Tsai, I. L.; Chen, J. H.; Duh, C. Y.; Chen, I. S. Cytotoxic neolignans from the stem wood of Machilus obovatifolia. Planta Med. 2000, 66, 403–407. 21. Hiroko, S.; Yutaka, S.; Oohara, M. Lignans from Machilus Thunbergii. Phytochemistry 1988, 27, 634–636. 22. Khanbabaee, K.; Ree, T. V. Tannins: classification and definition. Nat. Prod. Rep. 2001, 18, 641–649. 23. Morimoto, S.; Nonaka, G. I.; Nishioka, I. Tannins and realted compounds. XXXV. Proanthocyanidins with a doubly linked unit from the root bark of Cinnamomum sieboldii MEISNER. Chem. Pharm. Bull. 1985, 33, 4338–4345. 24. Lou, H.; Yuan, H., Ma, B.; Ren, D.; Ji, M.; Oka, S. Polyphenols from peanut skins and their free radical-scavenging effects. Phytochemistry 2004, 65, 2391–2399. 25. Lin, H. C.; Lee, S. S. Proanthocyanidins from the leaves of Machilus philippinensis. J. Nat. Prod. 2010, 73, 1375–1380. 26. Bilia, A. R.; Morelli, I.; Hamburger, M.; Hostettmann, K. Flavans and A-type proanthocyanidins from Prunus prostrate. Phytochemistry 1996, 43, 887–892. 27. Morimoto, S.; Nonaka, G. I.; Nishioka, I. Tannins and related compounds. LIX. Aesculitannins, novel proanthocyanidins with doubly-bonded structures from Aesculus hippocastanum L. Chem. Pharm. Bull. 1987, 35, 4717–4729. 28. Kamiya, K.; Watanabe, C.; Endang, H.; Umar, M.; Satake, T. Studies on the Constituents of bark of Parameria laevigata MOLDENKE. Chem. Pharm. Bull. 2001, 49, 551–557. 29. Kamiya, K.; Ohno, A.; Horii, Y.; Endang, H.; Umar, M.; Satake, T. A-type proanthocyanidins from the bark of Parameria laevigata, Heterocycles 2003, 60, 1697–1708. 30. Balde, A. M.; DeBruyne, T.; Pieters, L.; Kolodziej, H.; Berghe, D. V.; Claeys, M.; Vlietinck, A. Oligomeric proanthocysnidins possessing a boubly linked structure from Pavetta Owariensis. Phytochemistry 1995, 38, 719–723. 31. Haslam, E. Symmetry and promiscuity in proanthocyanidin biochemistry Phytochemistry 1977, 16, 1625–1640. 32. Abe, Y.; Shoji, T.; Kawahara, N.; Kamakura, H.; Kanda, T.; Goda, Y.; Ozeki, Y. Structural characterization of a procyanidin tetramer and pentamer from the apple by low-temperature NMR analysis Tetrahedron Lett. 2008, 49, 6413–6418. 33. Shoji, T.; Mutsuga, M.; Nakamura, T.; Kanda, T.; Akiyama, H.; Goda, T. Isolation and structural elucidation of some procyanidins from apple by low-temperature nuclear magnetic resonance. J. Agric. Food Chem. 2003, 51, 3806–3813. 34. Muranaka, A.; Yoshida, K.; Shoji, T.; Moriichi, N.; Masumoto, S.; Kanda, T.; Ohtake, Y.; Kobayashi, N. Chiral recognition of apple procyanidins by complexation with oxotitanium phthalocyanine. Org. Lett. 2006, 8, 2447–2450. 35. Anderson, R. A.; Broadhurst, C. L.; Polansky, M. M.; Schmidt, W. F.; Khan, A.; Flanagan, V. P.; Schoene, N. W.; Graves, D. J. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J. Agric. Food Chem. 2004, 52, 65–70. 36. Lee, Y. A.; Cho, E. J.; Yokozawa, T. Effects of proanthocyanidin preparations on hyperlipidemia and other biomarkers in mouse model of type 2 diabetes J. Agric. Food Chem. 2008, 56, 7781–7789. 37. Liu, X. M.; Wei, J. P.; Tan, F. S.; Zhou, S. M.; Wurthwein, G.; Rohdewald, P. Antidiabetic effect of Pycnogenol French maritime pine bark extract in patients with diabetes type II. Life Sci. 2004, 75, 2505–2513. 38. Schafer, A.; Hogger, P. Oligomeric procyanidins of French maritime pine bark extract (Pycnogenol) effectively inhibit α-glucosidase. Diabetes Res. Clin. Pract. 2007, 77, 41–46. 39. H. C. Lin; S. F. Tsai; S. S. Lee. Flavonoid glycosides from the leaves of Machilus philippinensis. J. Chin. Chem. Soc. 2011, 58, in press 40. Chang, Y. C.; Chang, F. R.; Wu, Y. C. The constituents of Lindera glauca. J. Chin. Chem. Soc. 2000, 47, 373-380. 41. Min, B. S.; Lee, S. Y.; Kim, J. H.; Lee, J. K.; Kim, T. J.; Kim, D. H.; Kim, Y. H.; Joung, H.; Lee, H. K.; Nakamura, N.; Miyashiro, H.; Hattori, M. Anti-complement activity of constituents from the stem-bark of Juglans mandshurica. Biol. Pharm. Bull. 2003, 26, 1042–1044. 42. Oyama, K.; Kondo, T. Total synthesis of apigenin 7,4’-di-O-β-glucopyranoside, a component of blue flower pigment of Salvia patens, and seven chiral analogues Tetrahedron 2004, 60, 2025–2034. 43. Lee, S.-S.; Wang, J.-S.; Chen, K. C. S. Chemical constituents from the roots of Zizyphus jujube Mill. var. Spinosa (I). J. Chin. Chem. Soc. 1995, 42, 77–82. 44. Lu, Y. R.; Foo, L. Y. The polyphenol constituents of grape pomace. Food Chem. 1999, 65, 1–8. 45. de Almeida, A. P.; Miranda, M.; Simoni, I. C.; Wigg, M. D.; Lagrota, M. H. C.; Costa, S. S. Flavonol monoglycosides isolated from the antiviral fractions of Persea Americana (Lauraceae) leaf infusion. Phytother. Res. 1998, 12, 562–567. 46. Braca, A.; Politi, M.; Sanogo, R.; Sanou, H.; Morelli, I.; Pizza, C.; De Tommasi, N. Chemical composition and antioxidant activity of phenolic compounds from wild and cultivated Sclerocarya birrea (Anacardiaceae) leaves. J. Agric. Food Chem. 2003, 51, 6689–6695. 47. Rodrigues, E. D.; da Silva, D. B.; de Oliveira, D. C. R.; da Silva, G. V. DOSY NMR applied to analysis of flavonoid glycosides from Bidens sulphurea. J. Magn. Reson. Chem. 2009, 47, 1095–1100. 48. Wang, P. H.; Lee, S. S. Polar chemical constituents from Phoebe formosana. J. Chin. Chem. Soc. 1999, 46, 215–219. 49. Kadota, S.; Takamori, Y.; Nyein, K. N.; Kikuchi, T.; Tanaka, K.; Ekimoto, H. Constituents of the leaves of Woodfordia fruticosa KKURZ. I. Isolation, structure, and proton and carbon-13 nuclear magnetic resonance signal assignment of Woodfruticosin (Woodfordin C), an inhibitor of deoxyribonucleic acid topoisomerase II. Chem. Pharm. Bull. 1990, 38, 2687–2697 50. Hasan, A.; Ahmed, I.; Jay, M.; Voirin, B. Flavonoids glycosides and an anthraquinone from Rumex Chalepensis. Phytochemistry 1995, 39, 1211–1213. 51. Julião, L. S.; Piccinelli, A. L.; Marzocco. S.; Leitão, S. G.; Lotti, C.; Autore, G.; Rastrelli, L. Phenylethanoid glycosides from Lantana fucata with in Vitro Anti-inflammatory Activity. J. Nat. Prod. 2009, 72, 1424–1428. 52. Ishii, T.; Yanagisawa, M. Synthesis, separation and NMR spectral analysis of methyl apiofuranosides. Carbohydr. Res. 1998, 313, 189–192. 53. 林曉青,'菲律賓楠抑制甲型葡萄糖水解酶之活性成份研究',國立台灣大學藥學研究所碩士論文,2006。 54. Rao, L.J.M.; Yada, H.; Ono, H.; Yoshida, M. Acylated and non-acylated flavonol monoglycosides from the Indian minor spice nagkesar (Mammea longifolia). J. Agri. Food Chem. 2002, 50, 3143–3146. 第二部分 1. Liao, J. C. Lauraceae in Flora of Taiwan, 2nd ed.; Editorial Committee of the Flora of Taiwan: Taipei, 1996; Vol. 2, pp 443−483. 2. Angmor, J. E.; Dicks, D. M.; Evans, W. C.; Santra, D. K. Studies on Cinnamomum zeylanicum. Planta Med. 1972, 21, 416−420. 3. Shintre, V. P., Rao, S. B. Essential oil from leaves of Cinnamomum zeylanicum Breyn. J. Indian. Institute Sci. 1932, 15a, 84−87. 4. Macbeth, A. K.; Smith, G. E., West, T. F. β-Phellandrene. J. Chem. Soc., 1938, 119−123. 5. Chen, F. C.; Peng, C. F.; Tsai, I. L.; Chen, I. S. Antitubercular constituents from the stem wood of Cinnamomum kotoense. J. Nat. Prod. 2005, 68, 1318−1323. 6. Fujita, Y; Yamashita, T. Biochemistry of the Essential Oils of Cinnamomum micranthum Hay. 2 Nippon Kagaku Kaishi 1944, 65, 591. 7. Kuo, S. Y.; Hsieh, T. J.; Wang, Y. D.; Lo, W.L.; Hsui, Y. R.; Chen, C. Y. Cytotoxic constituents from the leaves of Cinnamomum subavenium. Chem. Pharm. Bull. 2008, 56, 97−101. 8. Isogais, A.; Murakoshia, H.; Suzuki, K. I.; Tamura, S. Chemistry and Biological Activities of Cinnzeylanine and Cinnzeylanol, New Insecticidal Substances from Cinnamonum zeylanicum Nees. Agric. Biol. Chem. 1977, 41, 1779−1783. 9. Lin, R. J.; Cheng, M. J.; Huang, J. C.; Lo, W. L.; Yeh, Y. T.; Yen, C. M.; Lu, C. M.; Chen, C. Y. Cytotoxic compounds from the stems of Cinnamomum tenuifolium. J. Nat. Prod. 2009, 72, 1816−1824. 10. Chen, C. H.; Lo, W. L.; Liu, Y. C.; Chen, C. Y. Chemical and cytotoxic constituents from the leaves of Cinnamomum kotoense. J. Nat. Prod. 2006, 69, 927−933. 11. Lin, I. J.; Lo, W. L.; Chia, Y. C.; Huang, L. Y.; Cham, T. M.; Tseng, W. S.; Yeh, Y. T.; Yeh, H. C.; Wang, Y. D.; Chen, C. Y. Isolation of new esters from the stems of Cinnamomum reticulatum Hay. Nat Prod Res. 2010, 24, 775−80. 12. Chen, C.; Wang, H.; Chung, S.; Lo, W.; Yang, W.; Yang, S. Chem. Nat. Comp. Chemical constituents from the roots of Cinnamomum subavenium. 2010, 46, 474−477. 13. Chen, C. Y.; Chen, C. H.; Wong, C. H.; Liu, Y. W.; Lin, Y. S.; Wang, Y. D.; Hsui, Y. R. Cytotoxic constituents of the stems of Cinnamomum subavenium. Nat. Prod. 2007, 70, 103−106. 14. Chen, C. Y.; Liu. T. Z.; Chen, C. H.; Wu, C. C.; Cheng, J. T.; Yiin, S. J.; Shih, M. K.; Wu, M. J.; Chern, C. L. Isoobtusilactone A-induced apoptosis in human hepatoma Hep G2 cells is mediated via increased NADPH oxidase-derived reactive oxygen species (ROS) production and the mitochondria-associated apoptotic mechanisms. Food Chem. Toxicol. 2007, 45, 1268−1276. 15. Chen, C. Y.; Yeh, H. C. A new amide from the stems of Cinnamomum reticulatum Hay. Nat. Prod. Res. 2011, 25, 26−30. 16. Hsieh, T. J.; Su, C. C.; Chen, C. Y.; Liou, C. H.; Lu, L. H. Using experimental studies and theoretical calculations to analyze the molecular mechanism of coumarin, p-hydroxybenzoic acid, and cinnamic acid.' J. Mol. Struct. 2005, 741, 193–199. 17. Tsuji-Naito, K. Aldehydic components of cinnamon bark extract suppresses RANKL-induced osteoclastogenesis through NFATc1 downregulation. Bioorg. Med Chem. 2008, 16, 9176–9183. 18. Chao, L. K.; Hua, K. F.; Hsu, H. Y.; Cheng, S. S.; Lin, I. F.; Chen, C. J.; Chen, S. T.; Chang, S. T. Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling. Food. Chem. Toxicol. 2008, 46, 220–231. 19. Jayaprakasha, G. K.; Ohnishi-Kameyama, M.; Ono, H.; Yoshida, M.; Jaganmohan, R. L. Phenolic constituents in the fruits of Cinnamomum zeylanicum and their antioxidant activity. J. Agric. Food Chem. 2006, 54, 1672–1679. 20. Chen, C. Y.; Yang, W. L.; Hsui, Y. R. A novel sesquiterpenoid from the roots of Cinnamomum subavenium. Nat. Prod. Res. 2010, 24, 423–427. 21. Fang, S. H.; Rao, Y. K.; Tzeng, Y. M. Inhibitory effects of flavonol glycosides from Cinnamomum osmophloeum on inflammatory mediators in LPS/IFN-γ -activated murine macrophages. Bioorg. Med. Chem. 2005, 13, 2381–2388. 22. Kuo, Y. C.; Lu, C. K.; Huang, L. W.; Kuo, Y. H.; Chang, C.; Hsu, F. L.; Lee, T. H. Inhibitory effects of acylated kaempferol glycosides from the leaves of Cinnamomum kotoense on the proliferation of human peripheral blood mononuclear cells. Planta Med. 2005, 71, 412–415. 23. Nonaka, G.; Morimoto, S.; Nishioka, I. Tannins and related compounds. Part 13. Isolation and structures of trimeric, tetrameric, and pentameric proanthicyanidins from cinnamon. J. Chem. Soc., Perkin Trans. 1, 1983, 2139–2145. 24. Balde, A. M.; Pieters, T. B.; Kolodziej, H.; Berghe, D. V.; Claeys, M.; Vlietinck, A. Oligomeric proanthocyanidins possessing a doubly linked structure from Pavetta owariensis. Phytochemistry 1995, 38, 719–723. 25. Uchiyama, H.; Nagasawa, K. Determination of the distribution of D-glucuronic acid units within the chain of pig-skin dermatan sulfate near the linkage region. Carbohydr. Res. 1987, 159, 263–273. 26. Tsuzuki, Y..; Kataoka, S.; Funayama, M.; Satsumabayashi, K. Rotatory dispersion and stereochemistry of organic compounds. XVI. carbonylphenyl Glucosides. Bull. Chem. Soc. Jpn. 1971, 44, 526−532. 27. Craig, J. C.; Pereira, W. E.; Halpern, B.; Westley, J. W. Optical rotatory dispersion and absolute configuration—XVII: α-alkylphenylacetic acids. Tetrahedron 1971, 27, 1173−1184. 28. Biscarini, P.; Bongini, A.; Casarini, D. Synthesis and characterization of chiral thioethers and mercury (II) halide complexes. Part 3.1.2 conformational energy calculation and NMR and CD spectra of the chiral isothiochroman (R)-(-)-4-ethel-3,4-dohydro-1H-2-benzothine. J. Chem. Res. 1990, 645−663. 29. Bnnenberg, E.; Djerassi, C.; Mislow, K.; Moscowitz, A. Inherently dissymmetric chromophores and circular dichroism. J. Am. Chem. Soc. 1962, 84, 2823−2827. 30. Mislow, K.; Bunnenberg, E.; Records, R.; Wellman, K.; Djerassi, C. Inherently dissymmetric chromophores and circular cichroism. II. J. Am. Chem. Soc. 1963, 85, 1342−1349. 31. Joshua, H.; Gans, R.; Mislow, K. Stereochemistry of 9-dimethylamino-9,10- dihydro-4,5-dimethylphenanthrene. J. Am. Chem. Soc. 1968, 90, 4884−4892. 32. Suzuki, H. Electronic Absorption Spectra and Geometry of Organic Molecules, Academic Press, New York, 1967, p 262. 33. Rashidi, P.; Sandström, J. The UV and CD spectra of a 60 twisted bridged biphenyl: an experimental and CNDO/S study. J. Mol. Struct. 1991, 246, 25−32. 34. Sagiv, J.; Yogev. A.; Mazur, Y. Application of linear dichroism to the analysis of electronic absorption spectra of biphenyl, fluorene, 9,9'-spirobifluorene, and [6.6]vespirene. Interpretation of the circular dichroism spectrum of [6.6]vespirene. J. Am. Chem. Soc. 1977, 99, 6861−6869. 35. Edwards, L. O.; Simpson, W. T. Polarizations of Electronic Transitions from Azimuthal Variation in Fluorescence Intensity—with Application to Biphenyl. J. Am. Chem. Phys. 1970, 53, 4237−4240. 36. Ikeya, Y.; Taguchi, H.; Yosioka, I.; Kobayashi, H. The constituents of Schizandra chinensis Baill. I. isolation and structure determination of five new lignans, gomisin A, B, C, F and G, and the absolute structure of schizandrin. Chem. Pharm. Bull. 1979, 27, 1383-1394. 37. Buckleton, J. S.; Cambie, R. C.; Clark, G. R.; Craw, P. A.; Rickard, C. E. F.; Rutledge, P. S.; Woodgate, P. D. Oxidative coupling of lignans. II. non-phenolic coupling of diarylbutane lignans related to matairesinol dimethyl ether. Aust. J. Chem. 1988, 41, 305–324. 38. Borecka, B.; Cameron, S.; Linden, A.; Rashidi-Ranjbar, P., Sandström, J. X-ray crystallographic determination of absolute configurations and conformations of two conformational isomers of 1,2,3,4-dibenzo-trans-6,7-dibromo-1,3- cyclooctadiene, a 2,2'-bridged biphenyl. J. Am. Chem. Soc. 1990, 112, 1185−1190. 39. Blunder, M.; Pferschy-Wenzig, E. M.; Fabian, W. M. F.; Hüfner, A.; Kunert, O.; Saf, R.; Schühly, W.; Bauer, R. Derivatives of schisandrin with increased inhibitory potential on prostaglandin E and leukotriene B formation in vitro. Bioorg. Med. Chem. 2010, 18, 2809–2815. 40. Vorogushin, A.; Wulff, W. D.; Hansen, H.-J. Central-to-axial chirality transfer in the benzannulation reaction of optically pure fischer carbene complexes in the synthesis of allocolchicinoids. Tetrahedron 2008, 64, 949–968. 41. Mzaleyrat, J.-P., Wright, K., Gaucher, A., Toulemonde, N.; Wakselman, M.; Oancea, S.; Peggion, C.; Formaggio, F.; Setnička V.; Keiderling, T. A.; Toniolo, C. Induced axial chirality in the biphenyl core of the calpha-tetrasubstituted α-amino acid residue Bip and subsequent propagation of chirality in (Bip)n/Val oligopeptides. J. Am. Chem. Soc. 2004, 126, 12874–12879. 42. Liu, J.-S.; Li, L.; Yu, H.-G. Kadsulignan A and B, two novel lignans from Kadsura coccinea. Can. J. Chem. 1989, 67, 682–684. 43. Boyĕ, O.; Brossi, A.; Yen, H. J. C.; Hamel, E., Wegrazynski, B., Toome, V.. Natural products. Antitubulin effect of congeners of N-acetylcolchinyl methyl ether: synthesis of optically active 5-acetamidodeaminocolchinyl methyl ether and of demethoxy analogues of deaminocolchinyl methyl ether. Can. J. Chem. 1992, 70, 1237–1249. 44. Buckleton, J. S.; Cambie, R. C.; Clark, G. R.; Craw, P. A.; Rickard, C. E. F.; Rutledge, P. S.; Woodgate, P. D. Oxidative coupling of lignans. II. Non-phenolic coupling of diarylbutane lignans related to matairesinol dimethyl ether. Aust. J. Chem. 1988, 41, 305–324. 45. Billinsky, J.; Krol, E. S. Nordihydroguaiaretic acid autoxidation produces a schisandrin-like dibenzocyclooctadiene lignin. J. Nat. Prod. 2008, 71, 1612–1615. 46. Sagiv, J. Influence of substitution pattern on the benzenoid transitions: Quantitative evaluation of the electronic and vibrational components from new experimental polarization data. Tetrahedron 33, 1977, 2303–2313. 47. Ahmed, A. F.; Kuo, Y. H.; Dai, C. F.; Sheu, J. H. Oxygenated terpenoids from a formosan soft coral Sinularia gibberosa. J. Nat. Prod. 2005, 68, 1208−1212. 48. Heymann, H.; Tezuka, Y.; Kikuchi, T.; Supriyatna, S. Constituents of Sindora sumatrana MIQ. I. Constituents of Sindora sumatrana MIQ.I. Isolation and NMR spectral analysis of sesquiterpenes from the dried pods. Chem. Pharm. Bull. 1994, 42, 138−146. 49. Collado, I. G.; Hanson, J. R.; Macias-Sanchez, A. J. The oxidative coupling of coumaranone with disulfur dichloride. Tetrahedron 1996, 52, 7961−7972. 50. Kouno, I.; Yanagida, Y.; Shimono, S.; Shintomi, M.; Ito, Y.; Yang, C. S. Neolignans and a phenylpropanoid glucoside from Illicium difengpi. Phytochemistry 1993, 32, 1573−1577. 51. Baderschneider, B.; Winterhalter, P. Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. J. Agric. Food Chem. 2001, 49, 2788−2798. 52. Jiang, L.; Kojima, H.; Yamada, K.; Kobayashi, A.; Kubota, K. Isolation of some glycosides as aroma precursors in young leaves of Japanese pepper (Xanthoxylum piperitum DC.). J. Agric. Food. Chem. 2001, 49, 5888−5894. 53. Mshvildadze, V.; Legault, J.; Lavoie, S.; Gauthier, C.; Pichette, A. Anticancer diarylheptanoid glycosides from the inner bark of Betula papyrifera. Phytochemistry 2007, 68, 2531−2536. 54. Capasso, R.; Evidente, A.; Avolio, S.; Solla, F. A highly convenient synthesis of hydroxytyrosol and its recovery from agricultural waste waters. J. Agric. Food. Chem. 1999, 47, 1745−1748. 55. Li, R.; Weng, Z.; Pu, J.; Sun, H. Chemical Constituents from Schisandra sphenanthera. Chin. Chem. Lett. 2008, 19, 696−698. 56. Shao, X.; Bai, N. S.; He, K.; Ho, C. T.; Yang, C. S.; Sang, S. M. Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species. Chem. Res. Toxicol. 2008, 21, 2042−2050. 57. Bilia, A. R.; Morelli, I.; Hamburger, M.; Hostettmann, K. Flavans and A-type proanthocyanidins from Prunus prostrata. Phytochemistry 1996, 43, 887−892. 58. Ibrahim, L. F.; El-Senousy, W. M.; Hawas, U. W. NMR spectral analysis of flavonoids from Chrysanthemum coronarium. Chem. Nat. Compd. 2007, 43, 659−662. 59. Caccamese, S.; Manna, L.; Scivoli, G.. Chiral HPLC separation and CD spectra of the C-2 diastereomers of naringin in grapefruit during maturation. Chirality 2003, 15, 661−667. 60. Sang, S. M.; Lapsley, K.; Jeong, W. S.; Lachance, P. A.; Ho, C. T.; Rosen, R. T. Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch). J. Agric. Food. Chem. 2002, 50, 2459−2463. 61. Kazuma, K.; Noda, N.; Suzuki, M. Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 2003, 62, 229−237. 62. Kaouadji M. Further Acylated Kaempferol Rhamnosides from Platanus acerifolia Buds. J. Nat. Prod. 1993, 56, 1618−1621. 63. Taniguchi, M.; Yanai, M.; Xiao, Y. Y.; Kido, T.; Baba, K. Three isocoumarins from Coriandrum sativum. Phytochemistry 1996, 42, 843−846. 64. Yang, N. Y.; Tao, W. W.; Duan, J. A. Antithrombotic flavonoids from the faeces of Trogopterus xanthipes. Nat. Prod. Res. 2010, 24, 1843–1849. 65. Kanokmedhakul, S.; Kanokmedhakul, K.; Nambuddee, K.; Kongsaeree, P. New bioactive prenylflavonoids and dibenzocycloheptene derivative from roots of Dendrolobium lanceolatum. J. Nat. Prod. 2004, 67, 968−972. 66. Lin, R. J.; Cheng, M. J.; Huang, J. C.; Lo, W. L.; Yeh, Y. T.; Yen, C. M.; Lu, C. M.; Chen, C. Y. Cytotoxic compounds from the stems of Cinnamomum tenuifolium. J. Nat. Prod. 2009, 72, 1816−1824. 67. Subehan, S.; Kadota, S.; Tezuka, Y. In vitro mechanism-based inactivation of cytochrome P450 3A4 by a new constituent of Cinnamomum burmani. Planta Med. 2008, 74, 1474−1480. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36018 | - |
| dc.description.abstract | 第一部分 菲律賓楠葉部之成份研究(II)
甲型葡萄糖水解酶為一種位在小腸刷狀緣的酵素,可將含1→4和1→6鍵結之葡萄糖聚合物之食物水解得到葡萄糖,因而抑制此酵素可減緩飯後血糖之上升,達到治療糖尿病的效果,其抑制劑使用於臨床治療糖尿病者有:acarbose、voglibose和miglitol等。 在我們先前的研究中顯示,自菲律賓楠葉部之二氯甲烷可溶部分分離出的兩個acylated flavonol monorhamnosides化合物對於甲型葡萄糖水解酶(Bacillus stearothermophilus, type IV)具有強抑制效果,由於乙酸乙酯和正丁醇可溶部分亦具抑制活性,因此本論文第一部分繼續探究這些部份之活性成分,共分離出21個成分,包括7個原花青素(2−8)和epicatechin (1)以及13個黃酮糖苷類(9−15, 19−21, 23, 25和26)。另外,應用液相層析-固相萃取-核磁共振儀連接技術,分析具有抑制活性的黃酮類混合物,又鑑定出5個黃酮糖苷類(16−18, 22和24)。其中,machiphilitannins A (7)、B (8)、kaempferol 3-O-(2-O-β-D-apiofuranosyl)-α-L -rhamnopyranoside (9)和kaempferol 3-O-(2-O-β-D-apiofuranosyl)-α-L- arabinofuranoside (10)為新天然物。對於甲型葡萄糖水解酶(type IV from Bacillus stearothermophilus)之活性測試顯示,化合物aesculitannin B (2)、7、8、quercetin 3-O-(6-O-α-L-rhamnopyranosyl)-β-D-galactopyranoside (13)和kaempferol 3-O-α-L-arabinopyranoside (23)之IC50分為3.5、31.3、18.4、19.5和19.0 μM。 第二部分 香桂葉部之成份研究 香桂為中型常綠喬木,分布於台灣海拔700至2100公尺的中部山區、中國、緬甸、柬埔寨、越南、馬來西亞和印度尼西亞等地。甲型葡萄糖水解酶在人類腸道中消化碳水化合物扮演著重要的角色,其抑制劑使用於臨床治療糖尿病者有acarbose和miglitol等。本研究以抑制活性為導向,利用Sephadex LH-20管柱、矽膠管柱、逆相層析管柱以及半製備高壓液相層析管柱自香桂葉部之酒精萃取物分離並鑑定出36個化合物,分別屬於dibenzocycloheptenes (27−29, 31, 32和34)、倍半萜類(35−43)、新木脂素(44)、苷類(45, 46和48)、苯乙醇(47)、黃酮類(49−59)、單寧類(3, 4)。其中,cinnasubavene A−H (27−34)、1β,6α,9β-trihydroxy-cis- eudesm-3-ene-6-O-β-D-glucopyranoside (39)以及其衍生物(40−43)和kaempferol-3-O- (4'-Z-p-coumaroyl)-α-L-rhamnopyranoside (57)為新天然物。 | zh_TW |
| dc.description.abstract | Part I: Chemical investigation of the leaves of Machilus philippinensis (II)
α-Glucosidase is an enzyme which is located in the small intestine brush broader and responsible for digestion of dietary carbohydrate with α-(1→4) and (1→6) linkage. Inhibition of this enzyme could improve postprandial glucose control in the treatment of diabetes mellitus. Currently, α-glucosidase inhibitors, acarbose, voglibose and miglitol, are used in clinic. Our recent studies have revealed that two acylated flavonol monorhamnosides from the leaf of Machilus philippinensis Merr. (Lauraceae) displayed potent inhibitory activities against α-glucosidase (Bacillus stearothermophilus, type IV). Continuing investigation of the α-glucosidase inhibitors in the EtOAc and n-BuOH soluble fraction of the EtOH extract of the M. philippinensis leaf via the bioassay-guided approach, 21 compounds, including seven proanthocyanidins (2−8), epicatechin (1) and 13 flavonoid glycosides (9−15, 19−21, 23, 25, and 26), were isolated. Application of high performance liquid chromatography–solid phase extraction–nuclear magnetic resonance (HPLC–SPE–NMR) hyphenated technique in characterization of the active compounds in a fraction rich in flavonol glycosides led to the identification of five additional flavonol glycosides (16−18, 22 and 24). Of these, machiphilitannins A (7), B (8), kaempferol 3-O-(2-O-β-D-apiofuranosyl)-α-L -rhamnopyranoside (1) and kaempferol 3-O-(2-O-β-D-apiofuranosyl)-α-L -arabinofuranoside (2) are new natural products. Bioassay of the isolated compounds showed the IC50 value of aesculitannin B (2), 7, 8, quercetin 3-O-(6-O-α-L-rhamnopyranosyl)-β-D-galactopyranoside (13) and kaempferol 3-O-α-L-arabinopyranoside (23) to be 3.5, 31.3, 18.4, 19.5 and 19.0 μM, respectively. Part II: Chemical investigation of the leaves of Cinnamomum subavenium Cinnamomum subavenium Miq. (Lauraceae) is a medium-sized evergreen tree distributed at an attitude of 700 to 2100 meters in central mountains in Taiwan and found in central to south China, Burma, Cambodia, Vietnam, Malaysia, Indonesia. α-Glucosidase is an enzyme which is located in the small intestine brush broader and responsible for digestion of dietary carbohydrate. Currently, α-glucosidase inhibitors such as acarbose and miglitol are used in clinic. Guided by bioassay against α-glucosidase (Bacillus stearothermophilus, type IV), 36 compounds were characterized and isolated by Sephadex LH-20 column, silica gel column, Lobar RP-18 column, and semi-preparative RP-18 HPLC. They belong to dibenzocycloheptenes (27−29, 31, 32 and 34), sesquiterpenoids (35−43), neolignan (44), glycosides (45, 46 and 48), phenethnol (47), flavonoids (49−59) and tannins (3, 4). Among them, cinnasubavene A−H (27−34), 1β,6α,9β-trihydroxy-cis-eudesm -3-ene-6-O-β-D-glucopyranoside (39) and its four derivatives (40−43) and kaempferol-3-O- (4'-Z-p-coumaroyl)-α-L-rhamnopyranoside (57) are new natural products. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:49:49Z (GMT). No. of bitstreams: 1 ntu-100-D95423004-1.pdf: 25600789 bytes, checksum: 4c68fe303a3d3d7cf5d62695ffbedd90 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 總目錄
中文摘要 I 英文摘要 III 目錄 V 流程圖目錄 (List of schemes VII 表目錄 (List of tables) VII 圖目錄 (List of figures) IX 辭彙(Glossary) XVI 目錄 第一部分:菲律賓楠葉部之成份研究(II) 壹、序論 1 1-1 研究目的 1 1-2 菲律賓楠植物簡介 2 1-3 樟科楨楠屬(Machilus)植物之成分研究 3 1-4 單寧類(Tannins)化合物的分類 12 1-5 利用硫解斷裂確認單寧類化合物之結構 13 貳、實驗結果與討論 15 2-1前花青素類(proanthocyanidin)化合物2–8與化合物1 17 2-1-1化合物1之結構解析 17 2-1-2化合物2−4之結構解析 18 2-1-3化合物5和6之結構解析 21 2-1-4化合物7和8之結構解析 23 2-1-5甲型葡萄糖水解酶抑制活性 29 2-2黃酮類化合物9−26 31 2-2-1化合物11, 12, 14−26之結構解析 31 2-2-2化合物9, 10和13之結構解析 36 2-2-3討論 40 2-3 Acylated flavanol rhamnoside類化合物 41 叁、實驗部分 44 3-1 儀器與材料 44 3-1-1 理化性質測定儀器 44 3-1-2 成分分離之儀器及材料 44 3-2試藥及溶劑 46 3-3植物來源 46 3-4萃取與純化 46 3-4-1 Fr.B-II之純化 47 3-4-2 Fr.B-IV之純化 48 3-4-3 Fr.B-VI之純化 48 3-4-4 Fr.B-VII之純化 48 3-4-5 Fr.E-II之純化 50 3-4-6 Fr.E-III之純化 50 3-4-7 Fr.E-VI之純化 50 3-4-8 Fr.E-IV以HPLC-SPE-NMR分析 50 3-4-9 Fr.E-IV以HPLC-MS分析 50 3-5甲型葡萄糖水解酶之活性試驗(α-glucosidase assay) 52 3-6化合物之物理數據 56 參考文獻 62 第二部分:香桂葉部之成份研究 壹、緒論及研究目的 69 1-1 研究目的 69 1-2香桂植物簡介 70 1-3樟科樟屬(Cinnamomum)植物之成分研究 71 貳、實驗結果與討論 81 2-1 Dibenzocycloheptene類化合物 84 2-1-1化合物27−34之結構解析 84 2-1-2化合物28−33絕對立體結構的確定 95 2-2化合物35之結構解析 102 2-3化合物36之結構解析 103 2-4化合物37和38之結構解析 105 2-5-1化合物39−41之結構解析 107 2-5-2化合物42和43之結構解析 114 2-6化合物44之結構解析 120 2-7化合物45之結構解析 121 2-8化合物46之結構解析 122 2-9化合物46之結構解析 123 2-10化合物48之結構解析 124 2-11化合物49之結構解析 126 2-12化合物50之結構解析 127 2-13化合物51-53之結構解析 129 2-14化合物54之結構解析 130 2-15化合物55-58之結構解析 132 2-6結果與討論 134 叁、實驗部分 136 3-1 儀器與材料 136 3-1-1 理化性質測定儀器 136 3-1-2 成分分離之儀器及材料 136 3-2試藥及溶劑 137 3-3植物來源 138 3-4萃取與純化 138 3-4-1 Fr.C-IV之純化 139 3-4-2 Fr. E-II之純化 141 3-4-3 Fr. E-III之純化 143 3-4-4 Fr. B-III之純化 145 3-5 HPLC-SPE-NMR及LC-MS分析Fr. E-III-5 147 3-6化合物28a和28b混合物的氫化 148 3-7化合物31a和31b混和物的氫化 148 3-8化合物之物理數據 149 參考文獻 158 附圖(spectral appendics) 167 流程圖目錄 (List of schemes) Scheme 1. Classification of the tannins.... 12 Scheme 2. Thiolytic dergradation (a) and formation (b) of compound 1.... 13 Scheme 3. Thiolytic dergradation of compound 2..... 14 Scheme 4. Separation sheme of EtOH extract of the leaves of M. philippinense... 47 Scheme 5. Separation scheme of n-BuOH-soluble part... 49 Scheme 6. Separation scheme of EtOAc-soluble part.. 56 Scheme 7. The principle of α-glucosidase assay.. 53 Scheme 8. Hydrogenation of diasteromeric mixtures of 28a and 28b (a), and 31a and 31b (b). 95 Scheme 9. Separation sheme of MeOH extract of the leaves of Cinnamomum subavenium. 139 Scheme 10. Separation scheme of CHCl3-soluble part. 140 Scheme 11. Separation scheme of Fr.E-II 142 Scheme 12. Separation scheme of Fr.E-III 144 Scheme 13. Separation scheme of n-BuOH-soluble part 146 表目錄 (List of tables) Table 1. Compounds isolated from Machilus plants. 3 Table 2. 1H and 13C NMR data of 1 (CD3OD, AV-400) 17 Table 3. 1H and 13C NMR data of 2, 3 and 4 (CD3OD, AV-400) 20 Table 4. 1H and 13C NMR data of 5 (CD3OD, AV-600) 22 Table 5. 1H and 13C NMR data of 5, 7 and 8 (CD3OD, AV-600). 25 Table 6. The isotopic shifta (Δδ/ppm) of C-5, C-7 and C-9 in 6, 7 and 8 by comparison of 13C NMR signals in CD3OH and CD3OD.. 28 Table 7. Isotopic shift in 13C NMR Data of 6, 7 and 8, measured in CD3OH and CD3OD. 28 Table 8. Inhibitory effect of compounds 1−8 and acarbose against α-glucosidase. 30 Table 9. 1H data of compounds 11, 12, 14, 15 and 19 (CD3OD, AV-400). 33 Table 10. 1H data of compounds 20, 21, 23, 25 and 26 (CD3OD, AV-400). 33 Table 11. 1H data of compounds 14-18 (CD3CN, AV-400) 35 Table 12. 1H data of compounds 19, 22, 24 and 25 (CD3CN, AV-400) 35 Table 13. 1H and 13C NMR data of 13 (CD3OD, AV-600). 36 Table 14. 1H-, 13C-NMR, HMBC, and COSY data of compounds 9 and 10 (CD3OD, AV-600) 39 Table 15. Inhibitory effect of compounds 13−15, 20, 21, and 23 against α-glucosidase. 40 Table 16. Inhibition activity of Cinnamomum species against α-glucosidase Type IV (from Bacillus stearothermophilus). 71 Table 17. 1H, 13C NMR and 2D data of 27 (CD3OD, AV-600).. 85 Table 18. 1H, 13C NMR and 2D data of 31a (CD3OD, AV-600). 87 Table 19. 1H, 13C and 2D NMR data of 31b (CD3OD, AV-600). 88 Table 20. 1H, 13C and 2D NMR data of 34 (CD3OD, AV-600) 91 Table 21. 1H NMR data of compounds 27−33 (CD3OD, AV-600) 95 Table 22. 1H NMR data of compounds 34, 28c, 28d, 31c and 31d (CD3OD, AV-600) 93 Table 23. 13C NMR data of compounds 27−29, 31, 32, 34, 28c, 28d, 31c and 31d (CD3OD, 150 MHz) 94 Table 24. 1H, COSY and NOESY data of 28c (CD3OD, AV-600) 97 Table 25. 1H, COSY and NOESY data of 28d (CD3OD, AV-600) 98 Table 26. 1H, COSY and NOESY data of 31c (CD3OD, AV-600) 99 Table 27. 1H, COSY and NOESY data of 31d (CD3OD, AV-600) 100 Table 28. 1H and 13C NMR data of compound 35 (CDCl3, AV-600) 103 Table 29. 1H, 13C NMR and NOESY data of 36 (CD3OD, AV-600) 104 Table 30a. 1H and 13C NMR data of 37 (CDCl3, AV-600)) 106 Table 30b. 1H and 13C NMR data of 38 (CDCl3, AV-600) 106 Table 31. 1H NMR, HMBC, COSY and NOESY data of 39 (CD3OD, AV-600) 109 Table 32. 13C NMR data of 39−43 (CD3OD, AV-600) 110 Table 33. 1H NMR, HMBC, COSY and NOESY data of 40 (CD3OD, AV-600) 111 Table 34. 1H NMR, HMBC, COSY and NOESY data of 41 (CD3OD, AV-600) 113 Table 35. 1H NMR, HMBC, COSY and NOESY data of 42 (CD3OD, AV-600) 116 Table 36. 1H NMR, HMBC, COSY and NOESY data of 43 (CD3OD, AV-600) 117 Table 37. 1H NMR data of 39–43 (CD3OD, AV-600) 118 Table 38. 1H and 13C NMR data of compound 44 (CD3OD, AV-600) 120 Table 39. 1H NMR data of compound 45 (CD3OD, AV-600) 121 Table 40. 1H and 13C NMR data of compound 46 (CD3OD, AV-600) 123 Table 41. 1H and 13C NMR data of compound 47 (CD3OD, AV-600). 124 Table 42. 1H and 13C NMR data of compound 48 (CD3OD, AV-600) 125 Table 43. 1H and 13C NMR data of compound 49 (CD3OD, AV-600) 127 Table 44. 1H and 13C NMR data of compounds 50 (CD3OD, AV-600) 128 Table 45. 1H NMR data of compounds 51-53 and 13C NMR data of compounds 51 and 52 (CD3OD, AV-600) 130 Table 46. Table 46. 1H and 13C NMR data of compound 54 (CD3OD, AV-600) 131 Table 47. 1H and 13C NMR data of compounds 55-58 (CD3OD, AV-600) 133 Table 48. Inhibitory effect of compounds 27, 28, 31, 32, 39, 41, 44−49, 51, 52, 54, 55, 57 and 58 against α-glucosidase 135 圖目錄 (List of figures) Figure 1. 菲律賓楠(Machilus philippinense Merr.)植物型態 2 Figure 2. Structure of compounds isolated from Machilus plants 6 Figure 3. CD spectra of 6 (---), 7 (---), and 8 (-). (MeOH) 24 Figure 4. Key HMBC correlations of compound 7 (a) and 8 (b) (CD3OD, AV-600) 27 Figure 5. On-line 1H-NMR spectra of compounds 14-19, 22, 24 and 25 obtained from HPLC-SPE-NMR (AV-400) (CD3CN). 34 Figure 6. NOESY correlations of compound 9.. 37 Figure 7. NOESY correlations of compound 10. 38 Figure 8. Structure of compounds MP-1~MP-10 41 Figure 9. HPLC chromatogram of MP-6 obtained initially by semi-preparative HPLC column 42 Figure 10. HPLC chromatogram of MP-6 in the HPLC eluent for one day. 42 Figure 11. HPLC chromatogram of MP-6 in the HPLC eluent for two day 42 Figure 12. HPLC chromatogram of the acylated flavonol rhamnosides-rich fraction 43 Figure 13. Acylated flavonol rhamnosides-riched fraction 43 Figure 14. HPLC chromatogram of Fr.E-IV 51 Figure 15. Inhibition activity of Cinnamomum species against α-glucosidase Type IV (from Bacillus stearothermophilus) 69 Figure 16. 香桂(Cinnamomum subavenium)植物型態. 70 Figure 17. Structure of compounds isolated from Cinnamomum plants.. 76 Figure 18. Key HMBC and NOESY correlations of compound 1 (CD3OD, AV-600). 85 Figure 19. Key HMBC (a) and NOESY (b) correlations of 34 (CD3OD, AV-600) 90 Figure 20. CD spectra of compounds 28c (a) and 28d (b) 95 Figure 21. Key NOESY correlations of compounds 28c (a) and 28d (b) 98 Figure 22. Key NOESY correlations of compounds 31c (a) and 31d (b) 100 Figure 23. CD spectra of compounds 27−29, 31, 32 and 34. 101 Figure 24. Key NOESY correlations of compound 35 102 Figure 25. Key HMBC correlations (a) and key NOESY correlations (b) of compound 39 (CD3OD, AV-600) 108 Figure 26. (a) Key HMBC correlations and (b) key NOESY correlations of compound 41 (CD3OD, AV-600) 113 Figure 27. Key NOESY correlations of compounds 42 (a) and 43 (b) (CD3OD, AV-600) 115 Figure 28. HPLC chromatogram of fr. E-III-5. The retention time (tR) of each compound follows: 18.5 min (30), 21.7 min (33), 24.7 min (14), 30.3 min (48) and 41.6 min (53) 148 Figure 29. 1H NMR spectrum of 1 (CD3OD, 400 MHz) 167 Figure 30. 1H NMR spectrum of 3 (CD3OD, 400 MHz) 168 Figure 31. 13C NMR spectrum of 3 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 100 MHz) 169 Figure 32. 1H NMR spectrum of 4 (CD3OD, 400 MHz). 170 Figure 33. 13C NMR spectrum of 4 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 100 MHz). 171 Figure 34. 1H NMR spectrum of 5 (CD3OD, 400 MHz).. 172 Figure 35. 1H NMR spectrum of 5 (CD3OD, 400 MHz, 295 K) 173 Figure 36. 13C NMR spectrum of 4 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 174 Figure 37. 1H NMR spectrum of 6 (CD3OD, 400 MHz) 175 Figure 38. 13C NMR spectrum of 6 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 100 MHz). 176 Figure 39. 1H NMR spectrum of 7 (CD3OD, 600 MHz, 298K) 177 Figure 40. 1H NMR spectrum of 7 (CD3OD, 600 MHz, 280K) 178 Figure 41. 13C NMR spectrum of 7 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 150 MHz, 298K) 179 Figure 42. COSY spectrum of 7 (CD3OD, 600 MHz, 295K) 180 Figure 43. TOCSY spectrum of 7 (CD3OD, 600 MHz, 295K) 181 Figure 44. TOCSY spectrum of 7 (CD3OD, 600 MHz, 295K) (Expansion). 182 Figure 45. HMQC spectrum of 7 (CD3OD, 600 MHz, 298K). 183 Figure 46. HMBC spectrum of 7 (CD3OD, 600 MHz, 298K). 184 Figure 47. HMBC spectrum of 7 (CD3OD, 600 MHz, 298K) (Expansion A) 185 Figure 48. HMBC spectrum of 7 (CD3OD, 600 MHz, 298K) (Expansion B) 186 Figure 49. 1H NMR spectrum of 8 (CD3OD, 600 MHz, 298K) 187 Figure 50. 1H NMR spectrum of 8 (CD3OD, 600 MHz, 280K) 188 Figure 51. 13C NMR spectrum of 8 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 150 MHz, 298K) 189 Figure 52. COSY spectrum of 8 (CD3OD, 600 MHz, 285K) 190 Figure 53. COSY spectrum of 8 (CD3OD, 600 MHz, 285K) (Expansion) 191 Figure 54. TOCSY spectrum of 8 (CD3OD, 600 MHz, 285K) (Expansion) 192 Figure 55. TOCSY spectrum of 8 (CD3OD, 600 MHz, 298K) 193 Figure 56. HMQC spectrum of 8 (CD3OD, 600 MHz, 298K) 194 Figure 57. HMBC spectrum of 8 (CD3OD, 600 MHz, 298K) 195 Figure 58. HMBC spectrum of 8 (CD3OD, 600 MHz, 298K) (Expansion A) 196 Figure 59. HMBC spectrum of 8 (CD3OD, 600 MHz, 298K) (Expansion B) 197 Figure 60. 1H NMR spectrum of 9 (CD3OD, 600 MHz). 198 Figure 61. 13C NMR spectrum of 9 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 150 MHz, 298K).. 199 Figure 62. COSY spectrum of 9 (CD3OD, 600 MHz) 200 Figure 63. HSQC spectrum of 9 (CD3OD, 600 MHz) 201 Figure 64. HMBC spectrum of 9 (CD3OD, 600 MHz) 202 Figure 65. NOESY spectrum of 9 (CD3OD, 600 MHz). 203 Figure 66. 1H NMR spectrum of 10 (CD3OD, 600 MHz) 204 Figure 67. 13C NMR spectrum of 10 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 150 MHz, 298K) 205 Figure 68. COSY spectrum of 10 (CD3OD, 600 MHz) 206 Figure 69. HSQC spectrum of 10 (CD3OD, 600 MHz) 207 Figure 70. HMBC spectrum of 10 (CD3OD, 600 MHz) 208 Figure 71. NOESYspectrum of 10 (CD3OD, 600 MHz). 209 Figure 72. 1H NMR spectrum of 13 (CD3OD, 400 MHz).. 210 Figure 73. 13C NMR spectrum of 13 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 100 MHz, 298K). 211 Figure 74. 1H NMR spectrum of 14 (CD3OD, 400 MHz) 212 Figure 75. 13C NMR spectrum of 14 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 100 MHz) 213 Figure 76. 1H NMR spectrum of 15 (CD3OD, 400 MHz) 214 Figure 77. 13C NMR spectrum of 15 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 100 MHz) 215 Figure 78. 1H NMR spectrum of 19 (pyridine-d5, 400 MHz) 216 Figure 79. 1H NMR spectrum of 20 (pyridine-d5, 400 MHz) 217 Figure 80. 13C NMR spectrum of 20 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (pyridine-d5, 400 MHz) 218 Figure 81. 1H NMR spectrum of 21 (pyridine-d5, 400 MHz) 219 Figure 82. 13C NMR spectrum of 21 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 100 MHz) 220 Figure 83. 1H NMR spectrum of 24 (CD3OD, 400 MHz) 221 Figure 84. 1H NMR spectrum of 25 (CD3OD, 400 MHz) 222 Figure 85. 1H NMR spectrum of 26 (CD3OD, 400 MHz) 223 Figure 86. 13C NMR spectrum of 26 (BBD: bot.; DEPT-90: top; DEPT-135: Middle) (CD3OD, 100 MHz) 224 Figure 87. 1H NMR spectrum of 27 (CD3OD, 600 MHz). 225 Figure 88. 13C NMR spectrum of 27 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 600 MHz).. 226 Figure 89. COSY spectrum of 27 (CD3OD, 600 MHz). 227 Figure 90. HSQC spectrum of 27 (CD3OD, 600 MHz) 228 Figure 91. HMBC spectrum of 27 (CD3OD, 600 MHz) 229 Figure 92. NOESY spectrum of 27 (CD3OD, 600 MHz). 230 Figure 93. 1H NMR spectrum of 28a and 28b (CD3OD, 600 MHz) 231 Figure 94. 13C NMR spectrum of 28a and 28b (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 600 MHz) 232 Figure 95. COSY spectrum of 28a and 28b (CD3OD, 600 MHz) 233 Figure 96. HSQC spectrum of 28a and 28b (CD3OD, 600 MHz) 234 Figure 97. HMBC spectrum of 28a and 28b (CD3OD, 600 MHz) 235 Figure 98. 1H NMR spectrum of 29a and 29b (CD3OD, 600 MHz). 236 Figure 99. 13C NMR spectrum of 29a and 29b (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 600 MHz).. 237 Figure 100. 1H NMR spectrum of 30a and 30b (CD3OD, 600 MHz). 238 Figure 101. NOESY spectrum of 30a and 30b (CD3OD, 600 MHz) 239 Figure 102. 1H NMR spectrum of 31a and 31b (CD3OD, 600 MHz) 240 Figure 103. 13C NMR spectrum of 31a and 31b (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 600 MHz) 241 Figure 104. 1H NMR spectrum of 32a and 32b (CD3OD, 600 MHz) 242 Figure 105. 13C NMR spectrum of 32a and 32b (BBD: bot.; DEP T-90: top;DEPT-135: Middle) (CD3OD, 600 MHz) 243 Figure 106. NOESY spectrum of 32a and 32b (CD3OD, 600 MHz) (Expansion) 244 Figure 107. 1H NMR spectrum of 33a and 33b (CD3OD, 600 MHz) 245 Figure 108. NOESY spectrum of33a and 33b (CD3OD, 600 MHz) (Expansion) 246 Figure 109. 1H NMR spectrum of 34 (CD3OD, 600 MHz) 247 Figure 110. 13C NMR spectrum of 34 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 600 MHz) 248 Figure 111. HMBC spectrum of 34 (CD3OD, 600 MHz) 249 Figure 112. NOESY spectrum of 34 (CD3OD, 600 MHz) 250 Figure 113. 1H NMR spectrum of 28c (CD3OD, 600 MHz) 251 Figure 114. 13C NMR spectrum of 28c (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 600 MHz) 252 Figure 115. NOESY spectrum of 28c (CD3OD, 600 MHz).. 253 Figure 116. 1H NMR spectrum of 28d (CD3OD, 600 MHz). 254 Figure 117. 13C NMR spectrum of 28d (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 600 MHz) 255 Figure 118. NOESY spectrum of 28d (CD3OD, 600 MHz) 256 Figure 119. 1H NMR spectrum of 31c and 31d (CD3OD, 600 MHz). 257 Figure 120. 13C NMR spectrum of 31c and 31d (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 600 MHz) 258 Figure 121. NOESY spectrum of 31c and 31d (CD3OD, 600 MHz) 259 Figure 122. 1H NMR spectrum of 35 (CD3OD, 600 MHz) 260 Figure 123. 13C NMR spectrum of 35 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CDCl3, 150 MHz) 261 Figure 124. 1H NMR spectrum of 36 (CDCl3, 400 MHz) 262 Figure 125. 13C NMR spectrum of 36 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CDCl3, 100 MHz). 263 Figure 126. 1H NMR spectrum of 37 (CDCl3, 600 MHz).. 264 Figure 127. 13C NMR spectrum of 37 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CDCl3, 150 MHz) 265 Figure 128. 1H NMR spectrum of 38 (CDCl3, 600 MHz) 266 Figure 129. 13C NMR spectrum of 38 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CDCl3, 150 MHz) 267 Figure 130. 1H NMR spectrum of 39 (CD3OD, 600 MHz) 268 Figure 131. 13C NMR spectrum of 39 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 269 Figure 132. HMBC spectrum of 39 (CD3OD, 600 MHz) 270 Figure 133. NOESY spectrum of 39 (CD3OD, 600 MHz) 271 Figure 134. 1H NMR spectrum of 40 (CD3OD, 600 MHz) 272 Figure 135. 13C NMR spectrum of 40 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 273 Figure 136. HMBC spectrum of 40 (CD3OD, 600 MHz) 274 Figure 137. 1H NMR spectrum of 41 (CD3OD, 600 MHz) 275 Figure 138. 13C NMR spectrum of 41 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 276 Figure 139. HMBC spectrum of 41 (CD3OD, 600 MHz) 277 Figure 140. 1H NMR spectrum of 42 (CD3OD, 600 MHz) 278 Figure 141. 13C NMR spectrum of 42 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 279 Figure 142. HMBC spectrum of 42 (CD3OD, 600 MHz).. 280 Figure 143. NOESY spectrum of 42 (CD3OD, 600 MHz) 281 Figure 144. 1H NMR spectrum of 43 (CD3OD, 600 MHz) 282 Figure 145. 13C NMR spectrum of 43 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 283 Figure 146. HMBC spectrum of 43 (CD3OD, 600 MHz). 284 Figure 147. NOESY spectrum of 43 (CD3OD, 600 MHz) 285 Figure 148. 1H NMR spectrum of 44 (CD3OD, 600 MHz) 286 Figure 149. 13C NMR spectrum of 44 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 287 Figure 150. 1H NMR spectrum of 45 (CD3OD, 600 MHz) 288 Figure 151. 13C NMR spectrum of 45 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 289 Figure 152. 1H NMR spectrum of 46 (CD3OD, 600 MHz) 290 Figure 153. 13C NMR spectrum of 46 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 291 Figure 154. 1H NMR spectrum of 47 (CD3OD, 600 MHz) 292 Figure 155. 13C NMR spectrum of 47 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 293 Figure 156. 1H NMR spectrum of 48 (CD3OD, 600 MHz) 294 Figure 157. 13C NMR spectrum of 48 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 295 Figure 158. 1H NMR spectrum of 49 (CD3OD, 600 MHz) 296 Figure 159. 13C NMR spectrum of 49 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 297 Figure 160. 1H NMR spectrum of 50 (CD3OD, 600 MHz) 298 Figure 161. 1H NMR spectrum of 51 (CD3OD, 600 MHz). 299 Figure 162. 13C NMR spectrum of 51 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 300 Figure 163. 1H NMR spectrum of 52 (CD3OD, 600 MHz) 301 Figure 164. 13C NMR spectrum of 51 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 302 Figure 165. 1H NMR spectrum of 53 (CD3OD, 600 MHz) 303 Figure 166. 1H NMR spectrum of 54 (CD3OD, 600 MHz) 304 Figure 167. 13C NMR spectrum of 54 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 150 MHz) 305 Figure 168. 1H NMR spectrum of 55 (CD3OD, 400 MHz) 306 Figure 169. 1H NMR spectrum of 56 (CD3OD, 400 MHz) 307 Figure 170. 1H NMR spectrum of 57 (CD3OD, 400 MHz) 308 Figure 171. 13C NMR spectrum of 57 (BBD: bot.; DEP T-90: top; DEPT-135: Middle) (CD3OD, 100 MHz) 309 Figure 172. 1H NMR spectrum of 58 (CD3OD, 400 MHz) 310 | |
| dc.language.iso | zh-TW | |
| dc.subject | 甲型葡萄糖水解酶 | zh_TW |
| dc.subject | 菲律賓楠 | zh_TW |
| dc.subject | 香桂 | zh_TW |
| dc.subject | Machilus philippinensis | en |
| dc.subject | Cinnamomum subavenium | en |
| dc.subject | α-glucosidase | en |
| dc.title | 第一部分 菲律賓楠葉部之成份研究(II)
第二部分 香桂葉部之成份研究 | zh_TW |
| dc.title | Part I: Chemical investigation of the leaves of Machilus philippinensis (II)
Part II: Chemical investigation of the leaves of Cinnamomum subavenium | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳春雄,陳繼明,徐鳳麟,李安榮,林雲蓮 | |
| dc.subject.keyword | 菲律賓楠,香桂,甲型葡萄糖水解酶, | zh_TW |
| dc.subject.keyword | Machilus philippinensis,Cinnamomum subavenium,α-glucosidase, | en |
| dc.relation.page | 310 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
