Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36016
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政忠(Tsung-Tsong Wu)
dc.contributor.authorZi-Gui Huangen
dc.contributor.author黃自貴zh_TW
dc.date.accessioned2021-06-13T07:49:46Z-
dc.date.available2006-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-26
dc.identifier.citation1. S. G. Johnson and J. D. Joannopoulos, “PHOTONIC CRYSTALS: The road from theory to practice,” Kluwer academic publishers, Boston (2003).
2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic Crystals: Molding the flow of light,” Princeton University Press, Princeton, NJ (1995).
3. A. Modinos, N. Stefanou, I. E. Psarobas, and V. Yannopapas, “On wave propagation in inhomogeneous systems,” Physica B 296, 167 (2001).
4. M. Lončar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” Journal of Lightwave Technology 18, 1402 (2000).
5. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bands in photonic crystal wave guides,” Phys. Rev. Lett. 77, 3787 (1996).
6. http://www.phys.uoa.gr/phononics/PhononicDatabase.html.
7. M. Sigalas and E. N. Ecconomou, “Elastic and acoustic wave band structure,” J. Sound Vib. 158, 377 (1992).
8. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic Band Structure of Periodic Elastic Composites,” Phys. Rev. Lett. 71, 2022 (1993).
9. M. S. Kushwaha and P. Halevi, “Band-gap engineering in periodic elastic composites,” Appl. Phys. Lett. 64, 1085-1087 (1994).
10. M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites,” Phys. Rev. B 49, 2313-2322 (1994).
11. J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, M. S. Kushwaha, and P. Halevi, “Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy composite and some metallic systems,” J. Phys.: Condens. Matter 6, 8759-8770 (1994).
12. M. Wilm, A. Khelif, S. Ballandras, and V. Laude, “Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials,” Phys. Rev. E 67, 065602 (2003).
13. C. Goffaux, and J. P. Vigneron, “Theoretical study of a tunable phononic band gap system,” Phys. Rev. B 64 (2001) 075118.
14. F. Wu, Z. Liu, and Y. Liu, “Acoustic band gaps in 2D liquid phononic crystals of rectangular structure,” J. Phys. D 35, 162-165 (2002).
15. F. Wu, Z. Liu, and Y. Liu, “Acoustic band gaps created by rotating square rods in a two-dimensional lattice,” Phys. Rev. E 66, 046628 (2002).
16. X. Li, F. Wu, H. Hu, S. Zhong, and Y. Liu, “Large acoustic band gaps created by rotating square rods in two-dimensional periodic composites,” J. Phys. D: Appl. Phys. 36, L15-L17 (2003).
17. M. M. Sigalas, and E. N. Economou, “Attenuation of multiple-scattered sound,” Europhys. Lett. 36, 241-246 (1996).
18. M. S. Kushwaha, and P. Halevi, “Stop-bands for periodic metallic rods: Sculptures that can filter the noise,” Appl. Phys. Lett. 70, 3218-3220 (1997).
19. F. Wu, Z. Hou, Z. Liu, and Y. Liu, “Point defect states in two-dimensional phononic crystals,” Phy. Lett. A 292, pp. 198-202 (2001).
20. X. Li and Z. Liu, “Coupling of cavity modes and guiding modes in two-dimensional phononic crystals,” Solid State Communications 133, pp. 397-402 (2005).
21. X. Li and Z. Liu, “Bending and branching of acoustic waves in two-dimensional phononic crystals with linear defects,” Phys. Lett. A 338, pp. 413-419 (2005).
22. M. Kafesaki and E. N. Economou, “Multiple-scattering theory for three-dimensional periodic acoustic composites,” Phys. Rev. B 60, 11993 (1999).
23. I. E. Psarobas, N. Stefanou, and A. Modinos, “Scattering of elastic waves by periodic arrays of spherical bodies,” Phys. Rev. B 62, 278 (2000).
24. Z. Liu, C. T. Chen, P. Sheng, A. L. Goetzen, and J. H. Page, “Elastic wave scattering by periodic structures of spherical objects: Theory and experiment,” Phys. Rev. B 62, 2446 (2000).
25. J. Mei, Z. Liu, J. Shi, and D. Tian, “Theory for elastic wave scattering by a two-dimensional periodical array of cylinders: An ideal approach for band-structure calculations,” Phys. Rev. B 67, 245107 (2003).
26. D. Garcia-Pablos, M. Sigalas, F. R. Montero de Espinoza, M. Torres, M. Kafesaki, and N. Garcia, “Theory and Experiments on Elastic Band gaps,” Phys. Rev. Lett. 84, 4349 (2000).
27. M. Sigalas and N. Garcia, “Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method,” J. Appl. Phys. 87, 3122 (2000).
28. M. Sigalas and N. Garcia, “Importance of coupling between longitudinal and transverse components for the creation of acoustic band gaps: The aluminum in mercury case,” Appl. Phys. Lett. 76, 2307 (2000).
29. Y. Tanaka, Y. Tomoyasu, and S. Tamura, “Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch,” Phys. Rev. B 62, 7387 (2000).
30. A. Khelif, B. Djafari-Rouhani, V. Laude, and M. Solal, “Coupling characteristics of localized phonons in photonic crystal fibers,” J. Appl. Phys. 94, 7944-7946 (2003).
31. J. H. Sun and T.-T. Wu, “Analyses of mode coupling in joined parallel phononic crystal waveguides,” Phys. Rev. B 71, 174303 (2005).
32. J. O. Vasseur, P. A. Deymier, G. Frantziskonis, G. Hong, B. Djafari-Rouhani, and L. Dobrzynski, “Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media,” J. Phys.: Condens. Matter 10, 6051-6064 (1998).
33. J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, “Experimental and theoretical evidence of absolute acoustic band gaps in two-dimensional solid phnonic crystals,” Phys. Rev. Lett. 86, 3012-3015 (2001).
34. F. R. Montero de Espinosa, E. Jimenez, and M. Torres, “Ultrasonic Band Gap in a Periodic Two-Dimensional Composite,” Phys. Rev. Lett. 80, 1208-1211 (1998).
35. M. Torres, F. R. Montero de Espinosa, and J. L. Aragón, “Ultrasonic Wedges for Elastic Wave Bending and Splitting without Requiring a Full Band Gap,” Phys. Rev. Lett. 86, 4282-4285 (2001).
36. P. St. J. Russell, E. Marin, and A. Díez, “Sonic band gaps in PCF preforms: enhancing the interaction of sound and light,” Optics Express 11, 2555 (2003).
37. K. M. Ho, C. K. Cheng, Z. Yang, X. X. Zhang, and P. Sheng, “Broadband locally resonant sonic shields,” Appl. Phys. Lett. 83, 5566-5569 (2003).
38. M. Torres, F. R. Montero de Espinosa, “Ultrasonic band gaps and negative refraction,” Ultrasonics 42, 787-790 (2004).
39. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004).
40. T. Aono and S. Tamura, “Surface and pseudosurface acoustic waves in superlattices,” Phys. Rev. B 58, 4838 (1998).
41. Y. Tanaka and S. Tamura, “Surface acoustic waves in two-dimensional periodic elastic structures,” Phys. Rev. B 58, 7958 (1998).
42. Y. Tanaka and S. Tamura, “Acoustic stop bands of surface and bulk modes in two-dimensional phononic lattices consisting of aluminum and a polymer,” Phys. Rev. B 60, 13 294 (1999).
43. Z. G. Huang and T.-T. Wu, “Temperature effects on bandgaps of surface and bulk acoustic waves in two-dimensional phononic crystals,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 365 (2005).
44. T.-T. Wu, Z. C. Hsu, and Z. G. Huang, “Band gaps and the Electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal,” Phys. Rev. B 71, 064303 (2005).
45. M. Wilm, A. Khelif, S. Ballandras, Vincent Laude, and T. Pastureaud, “A full 3D plane-wave-expansion model for 1-3 piezoelectric composite structures,” J. Acoust. Soc. Am. 112, 943 (2002).
46. V. Laude, M. Wilm, S. Benchabane, and A. Khelif, “Full band gap for surface acoustic waves in a piezoelectric phononic crystal,” Phys. Rev. E 71, 036607 (2005).
47. R. E. Vines, J. P. Wolfe, and A. G. Every, “Scanning phononic lattices with ultrasound,” Phys. Rev. B 60, 11871 (1999).
48. R. E. Vines and J. P. Wolfe, “Scanning phononic lattices with surface acoustic waves,” Physica B 263-264, 567 (1999).
49. A. G. Every, R. E. Vines, and J. P. Wolfe, “Line-focus probe excitation of Scholte acoustic waves at the liquid-loaded surfaces of periodic structures,” Phys. Rev. B 60, 11755 (1999).
50. F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sa'nchez-Dehesa, C. Lo´pez, and J. Llinares, “Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal,” Phys. Rev. B 59, 12 169 (1999).
51. M. Torres, F. R. Montero de Espinosa, D. Garica-Pablos, and N. Garcia, “Sonic Band Gaps in Finite Elastic Media Surface States and Localization Phenomena in Linear and Point Defects,” Phys. Rev. Lett. 82, 4282 (1999).
52. C. Kittel, “Introduction to Solid State Physics,” 7th ed., John Wiley & Sons. Inc., (1996).
53. J. H. Wilkinson, “The algebraic eigenvalue problem,” Clarendon Press, Oxford, (1965).
54. S. C. Lin, “A study on the wave propagation and band-gap phenomena in two-dimensional phononic crystals,” Master thesis, Institute of Applied Mechanics, National Taiwan University (2001).
55. B. A. Auld, “Acoustic Fields and Waves in Solids,” 2nd ed., Kreiger, Malabar, FL, (1990).
56. W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E 61, 929 (2000).
57. C. Dembowski, H.-D. Graf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, “Experimental Observation of the Topological Structure of Exceptional Points,” Phys. Rev. Lett. 86, 787 (2001).
58. M. Philipp, P. von Brentano, G. Pascovici, and A. Richter, “Frequency and width crossing of two interacting resonances in a microwave cavity,” Phys. Rev. E. 62, 1922 (2000).
59. D. R. Lide, “CRC handbook of chemistry and physics,” CRC press 83rd ed. Boca Raton London, NY, (2002-2003).
60. T.-T. Wu, Z. G. Huang, and S. Y. Liu, “Surface acoustic wave band gaps in micro-machined air/silicon phononic structures – theoretical calculation and experiment,” Zeitschrift für Kristallographie, in press, (2005).
[http://www.oldenbourg.de/frame0.htm?http://www.oldenbourg.de/cgi-bin/roabstracts?A=5198]
61. T.-T. Wu, L. C. Wu, and Z. G. Huang, “Frequency band-gap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers,” J. Appl. Phys. 97, 094916 (2005).
62. S. G. Johnson (Assistant Professor of Applied Mathematics, Massachusetts Institute of Technology), private discussions (2005).
63. H. Goldstein, “Classical Mechanics,” 2nd ed., Addison-Wesley Publishing Company, Inc. (2000).
64. E. Lafond, X. Zhang, P. Deymier, “Executive Summary- Phononic Crystals for Acoustic Applications in Telecoms,” Georgia Institute of Technology – University of Arizona (2005).
[http://www.ipst.gatech.edu/faculty_new/faculty_bios/lafond/Executive%20Summary%20on%20Phononic%20Crystals%20for%20Telecom%20Appl.pdf]
65. H. Altug and J. Vučković, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84, 161-163 (2004).
66. D. Royer and E. Dieulesaint, “Elastic Waves in Solids I: Free and Guided Propagation,” Springwe-Verlag Berlin Heidelberg, (2000).
67. M. B. Braga, “Wave propagation in anisotropic layered composites,” A Dissertation of Stanford University (1990).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36016-
dc.description.abstract近年來光子晶體之研究迅速增長,今由於光子與聲子的類比性,可推斷由彈性材料組成之週期性結構,在適當調整其材料常數及排列方式後,通過之聲波亦有頻溝現象存在,而將此類結構稱為聲子晶體。聲子晶體的頻溝現象,可應用於徹體波濾波器或表面聲波濾波器,阻止特定角度與頻率入射的聲子傳遞,藉以達成濾波之效果。本論文所採用之理論分析方法,乃藉由固態物理相關定理與彈性波動方程式之結合,針對兩種彈性材料組成之週期性結構進行分析。
本研究以平面波展開法分析二維聲子晶體其徹體波與表面聲波的波傳行為及頻溝現象,並針對不同效應在調變聲波頻溝上作進一步的探討。其中,針對填充率、旋轉正方柱填充體的角度、溫度效應、中空圓柱結構及組合式聲子晶體,對聲子晶體聲波頻溝大小之影響亦有深入的探究。由於結構形狀對聲子晶體聲波頻溝有很大的影響,且材料本身的特性亦會對聲波頻溝造成相當明顯的變化,因此在適當控制溫度,或以不同結構形狀設計時,聲子晶體結構的聲波頻溝大小將可作調變與應用。當聲子晶體表面聲波與徹體波模態之頻溝可作調變時,這樣的頻溝影響效應,便可對於聲子晶體共振器或濾波器作精密的設計與控制。另一方面,本文利用含超晶格技術之平面波展開法分析缺陷式及波導型聲子晶體的波傳特性,發現含缺陷式聲子晶體之設計可以將某些頻率的波傳能量侷限在缺陷處,以達到共振的效應,此特性不僅徹體波具有,表面聲波亦有明顯的現象產生。而在波導型聲子晶體的研究上,關於單一通道、兩倍寬度通道、雙通道及三通道之波導耦合分析,發現聲波在各種波導上具有特殊的物理現象,並針對這些現象進行深入的探討。
綜言之,本文研究結果顯示此含超晶格技術之平面波展開法在聲子晶體上的波傳理論分析可成功探討聲波頻溝現象及波導研究,藉以這樣的分析模式達成設計二維聲波濾波器及相關聲波元件之目的。
zh_TW
dc.description.abstractSuccessful application of photonic crystals has led to a rapid growing interest in the analogous acoustic effects in periodic elastic structures called phononic crystals recently. The phenomenon of frequency band gap in the phononic crystal can be applied to the designs of filters for surface and bulk acoustic waves. The repetitive structures made up of different elastic materials can prevent elastic/acoustic waves from passing by at some specific angles or certain frequency bands. The analysis is carried out within the framework of the theorems in solid-state physics and wave equation of motion in inhomogeneous elastic media.
The methods employed in studying the wave motion in phononic crystals are based on the plane-wave expansion method and supercell technique. The formulations for elastic/acoustic wave propagation in phononic crystals are consisted of the materials with general anisotropy. The frequency band-gap features and wave propagation of surface and bulk acoustic waves in the two-dimensional phononic crystals with either square or hexagonal lattices are investigated. The concept of tunable frequency band gaps of the surface and bulk modes in the two-dimensional phononic crystals is introduced by changing the filling fraction, rotating square rods, hollow cylinders, and sectional phononic crystals. On the other hand, the supercell technique is adopted to calculate the defect modes and extended modes in phononic crystals. The technique is also used to analyze the propagating modes and couplings of waveguides in phononic crystals with acoustic channels.
It is worth noting that through a suitable design by using the plane-wave expansion and supercell techniques, the acoustic filters, mirrors, resonators, and waveguides are the possible applications in the two-dimensional phononic crystals.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:49:46Z (GMT). No. of bitstreams: 1
ntu-94-D89543003-1.pdf: 20993970 bytes, checksum: 3d3e9bdc49a3a820336be773a155a3c3 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents致謝 I
Abstract II
摘要 III
List of notations IV
Contents VII
List of Figures IX
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Phononic Crystals and Photonic Crystals 2
1-3 An Overview of the Text 6
Chapter 2 Elastic/Acoustic Waves in Two-dimensional Phononic Crystals 9
2-1 Real Space and k Space 9
2-2 Equations of Motion 11
2-3 BAW Modes in Two-dimensional Phononic Crystals 15
2-4 SAW Modes in Two-dimensional Phononic Crystals 17
2-5 Structural Function 19
Chapter 3 Frequency Band Gaps of BAW Modes in Phononic Crystals 26
3-1 Mixed and Transverse Polarization Modes 26
3-2 Level Repulsion Effect 29
3-3 Fluid/Fluid Phononic Band Structures 33
3-4 Quasi-Polarization Modes 34
Chapter 4 Frequency Band Gaps of SAW and PSAW Modes
in Phononic Crystals 45
4-1 Isotropic materials - Al/Ni square lattice 45
4-2 Cubic materials - AlAs/GaAs square lattice 46
4-3 Hexagonal materials - Al/ZnO square lattice and hexagonal lattice 47
4-4 Orthorhombic materials - Al/Ba2NaNb5O15 square lattice and
hexagonal lattice 48
4-5 Total Frequency Band Gap of SAW modes 50
4-6 Summary 53
Chapter 5 Tunable Frequency Band Gaps of SAW and BAW modes
in Phononic Crystals 61
5-1 Filling Fraction 61
5-2 Rotation of Square Rods 63
5-3 Hollow cylinders 65
5-4 Sectional Phononic Crystals 67
5-5 Summary 69
Chapter 6 Supercell Technique in Phononic Crystals 83
6-1 Reciprocal Lattice Vectors and Structural Function in Supercell 83
6-2 Comparison between Supercell and Unit Cell 86
6-3 Defect-Modes Analysis 90
6-4 Acoustic-Channel Analysis 94
6-5 Summary 101
Chapter 7 Conclusion and Outlook 130
7-1 Conclusion 130
7-2 Outlook 132
Appendix A. Material Properties 137
References 139
作者簡歷 146
dc.language.isoen
dc.subject徹體波zh_TW
dc.subject聲子晶體zh_TW
dc.subject平面波展開法zh_TW
dc.subject超晶格技術zh_TW
dc.subject表面聲波zh_TW
dc.subjectSupercell techniqueen
dc.subjectBAWen
dc.subjectSAWen
dc.subjectPhononic crystalen
dc.subjectPlane-wave expansionen
dc.title利用含超晶格技術之平面波展開法分析聲子晶體聲波波傳之研究zh_TW
dc.titleANALYSIS OF WAVE PROPAGATION IN PHONONIC CRYSTALS USING THE PLANE-WAVE EXPANSION AND SUPERCELL TECHNIQUESen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳朝光(Chao-Kuang Chen),翁政義(Cheng-I Weng),葉超雄(Chau-Shioung Yeh),趙振綱(C.-K. Chao),馬劍清(Chien-Ching Ma)
dc.subject.keyword聲子晶體,平面波展開法,超晶格技術,表面聲波,徹體波,zh_TW
dc.subject.keywordPhononic crystal,Plane-wave expansion,Supercell technique,SAW,BAW,en
dc.relation.page146
dc.rights.note有償授權
dc.date.accepted2005-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
20.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved