Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36004
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王根樹
dc.contributor.authorPei-Lin Huangen
dc.contributor.author黃珮琳zh_TW
dc.date.accessioned2021-06-13T07:49:31Z-
dc.date.available2006-08-03
dc.date.copyright2005-08-03
dc.date.issued2005
dc.date.submitted2005-07-26
dc.identifier.citationBacklund P. Degradation of Aquatic Humic Material by Ultraviolet Light. Chemosphere, 25: 1869-1878(1992).
Boorman, G. A., Dellarco, V., Dunnick, J. K., et al. Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environ. Health Persp. Suppl. 1, 107: 207-217(1999)
Bove, F. J., Fulcomer, M. C., Klotz, J. B., Esmart, J., Dufficy E. M., and Savrin, J. E. Public drinking water contamination and birth outcomes. Am. J. Epidemiol., Vol 141, Issue 9: 850-862(1995).
Boyce S. D. and Horhig J. F. Reaction Pathways of Trilahomethane Formation from the Halogenation of Dihydroxyaromatic Model Compounds for Humic Acid. Environ. Sci. Technol., 17:202-211(1983).
Cantor, K. P., Hoover, R., Mason, T. J., McCabe, L. J. Association of cancer mortality with halomethanes in drinking water. J. nat. Cancer Inst., 61: 979-985 (1978).
Cooper W. J., Zika R. G. and Steinhauer M. S. Bromide-oxidant Interactions and THM Formation: A Literature Review. Jour. AWWA, 77:4:116-121(1985).
Cowman, G. A. and Singer, P. C. Effect of Bromide Ion on Haloacetic Acid Speciation Resulting from Chlorination and Chloramination of Aquatic Humic Substance. Environ. Sci. Technol., 30:16-24(1996).
DeMarini, D. M., Shelton, M. L., Warren, S. H., Ross, T. M., Shim, J. Y., Richard, A. M., Pegram, R. A. Glutathione S-transferase-mediated induction of GC-->AT transitions by halomethanes in Salmonella. Environ. Mol. Mutagen., 30(4):440-447(1997).
Dodds, L. and King, W. D. Relation between trihalomethane compounds and birth defects. Occup. Environ. Med., July 1, 58(7): 443-446(2001).
Dore M., Merlet N., Laat De and Goichon J. Reactivity of Halogens with Aqueous Micropollutants: a Mechanism for the Formation of Trihalomethanes. Jour. AWWA, 74:2:103-107(1982).
Heller-Grossman L., Manka J., Limoni-Relis B. and Rebhun M. Formation and Distribution of Haloacetic Acids, THM and TOX in Chlorination of Bromide-Rich Lake Water. Wat. Res., 27:1323-1331(1993).
IARC Monographs on the evaluation of Carcinogenic Risks to Humans. Volume 52: Chlorinated Drinking-water; Chlorination By-products; Some Other Halogenated Compounds; Cobalt and Cobalt Compounds. Lyon: International Agency for Research on Cancer(1991).
Ilett, K. F.; Reid, W. D.; Sipes, I. G.; Krishna, G. Chloroform Toxicity in Mice: Correlation of Renal and Hepatic Necrosis with Covalent Binding of Metabolites to Tissue Macromolecules. Exp. Mol. Pathol. 19: 215-229 (1973).
Jorgenson, T. A., Meierhenry, E. F., Rushbrook, C. J., et al. Carcinogenicity of Chloroform in Drinking Water to Male Osborne-Mendel Rats and Female B6C3F1 Mice. Fund. Appl. Toxicol., 5(4):760-769 (1985).
Li C. W., Benjamin M. M. and Korshin, G. V. Use of UV Spectroscopy to Characterize the Reaction Between NOM and Free Chlorine. Environ. Sci. Technol., 34:2570-2575(2000).
Liang L. and Singer P. C. Factors Influencing the Formation and Relative Distribution of Haloacetic Acids and Trihalomethanes in Drinking Water. Environ. Sci. Technol., 37:2920-2928(2003).
Minear R. A. and Bird, J. C. Trihalomethanes: Impact of Bromide Ion Concentration on Yield, Species Distribution , Rate of Formation and Influence of Other variables. Water Chlorination:Environmental Impact and Health Effects. Vol. 3, 151-160(1979).
Nokes C. J., Fenton E., Randall C. J. Modelling the Formation of Brominated Trihalomethanes in Chlorinated Drinking Waters. Wat. Res., 33:3557-3568(1999).
Oliver B. G. Effect of Temperature, pH and Bromide Concentration on the Trihalomethane Reaction of Chlorine with Aquatic Humic Material. Water Chlorination:Environmental Impact and Health Effects. Vol. 3, 141-149(1979).
Reckhow D. A., Singer P. C. and Malcolm R. L. Chlorination of Humic Materials: Byproduct Formation and Chemical Interpretations. Environ. Sci. Technol., 24:1655-1664(1990).
Weishaar et al. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol., 37:4702-4708(2003).
Westerhoff P., Chao P., and Mash H. Reactivity of Natural Organic Matter with Aqueous Chlorine and Bromide. Wat. Res., 38:1502-1513(2004).
Yamamoto, S., Kasai, T., Matsumoto, M., et al. Carcinogenicity and chronic toxicity in rats and mice exposed to chloroform by inhalation. J. Ossup. Health, 44(5): 283-293(2002).
Yang, C. Y., Chiu, H. F., Cheng, M. F., Tsai, S. S. Chlorination of drinking water and cancer mortality in Taiwan. Environmental Res. 78, 1: 1-6(1998).
吳俊宗,藻類與金沙地區自來水水質關係之探討,金門縣自來水廠(2004)。
金門地區高級淨水處理工程委託技術服務,金門縣自來水廠(2004)。
張慧嫻,台灣地區飲用水中含鹵乙酸之分析與流佈調查,台灣大學環境衛生所碩士論文(2004)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36004-
dc.description.abstract飲用水加氯消毒是台灣普遍採行之處理程序,然而氯會與水中有機物形成含氯消毒副產物,當水體有溴離子時則生成含溴消毒副產物,前者的致癌性與後者的生殖危害同樣值得重視。文獻指出pH 值、氯溴比及前質組成均影響消毒副產物之生成,然而文獻多關心單一參數或中性環境下之變化,缺乏整合各參數間之交互作用。本研究欲探討水中影響含氯、含溴消毒副產物生成之因素,並觀察以UV/H2O2前處理含溴水體後,消毒副產物生成潛能及物種分佈之變化。
前質試驗中選擇芳香族、脂肪族前質,添加不同濃度溴離子以改變氯溴比,分別觀察pH 7及pH 9之DBPFP濃度及物種分佈。發現任何條件下,芳香族前質僅生成含氯消毒副產物,可能因空間阻礙(steric hindrance)阻擋大分子HOBr與前質反應;脂肪族前質不具上述阻礙,易與反應速率較快之HOBr形成含溴消毒副產物。此外,芳香族前質偏好pH 7之環境,脂肪族前質則於pH 9較活躍。
本研究選擇金門太湖原水及實驗室配製前質作為實驗水樣,以UV及UV/H2O2前處理進行60∼120分鐘之氧化程序。UV反應過程中NPDOC無明顯變化,紫外光直接降解雙鍵導致DBPFP些微減少;UV/H2O2程序可有效降解NPDOC,然而DBPFP皆呈現先升後降之趨勢,在反應10分鐘達到最高點後才逐漸下降。可能由於氫氧自由基與有機物鍵結形成醇、酮類,增加水中消毒副產物之前質。
UV/H2O2程序不改變水中溴離子濃度,也不生成致癌性的溴酸鹽。若能確保高壓紫外燈之催化效率,有效縮短反應時間,UV/H2O2程序具應用於含溴金門原水之潛力。
zh_TW
dc.description.abstractChlorination disinfection is a common water treatment process in Taiwan, generating toxic chlorinated disinfection by-products (DBPs). Unfortunately, Br-DBPs are also formed in presence of bromide. Cl-DBPs and Br-DBPs have received much public concern about their different health effects on carcinogenicity and reproduction damages. Therefore, the objective of this study is to evaluate bromide concentration, pH and precursor structures in drinking water to determine their influences on formation and distribution of THM and HAA. And this study also concerned about the changes of influencing factors and DBPFP in UV/H2O2 oxidation.
Aromatic and aliphatic precursors and different bromide concentration were evaluated for the distribution of Cl-DBP and Br-DBP under chlorination at pH 7 and pH 9. Steric hindrance limited the aromatic precursors to Cl-DBPs under whole conditions. The aliphatic precursors tended to form Br-DBPs. Besides, the aromatic precursors were more reactive at pH 7, and the aliphatic one at pH 9.
Tai lake water (Kinmen, Taiwan) and humic acids were selected in this study. In the UV/H2O2 process, THMFP or HAAFP increased within 10 min of irradiation and began to decrease after 30 min. OH-radicals seemed to increase DBPFP because which was not observed using UV irradiation without hydrogen peroxide. The bromide concentration remained stable and no bromate was formed under all irradiation time. The optimum effectiveness of UV/H2O2 process should be reached in application of bromide-rich Kinmen water.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:49:31Z (GMT). No. of bitstreams: 1
ntu-94-R92844003-1.pdf: 621957 bytes, checksum: 469cc4fd88630f8c33a81ea59f8bed24 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents摘 要 I
Abstract I
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究架構 2
第二章 文獻回顧 3
2.1天然背景有機物 3
2.1.1消毒副產物之來源 3
2.1.2天然背景有機物之分析 4
2.2.飲用水中之消毒副產物 4
2.2.1消毒副產物的分類與性質 4
2.2.2消毒副產物的健康效應 6
2.2.2.1三鹵甲烷之毒性 6
2.2.2.2鹵乙酸之毒性 9
2.2.3各國飲用水消毒副產物之管制標準 10
2.2.3.1 三鹵甲烷之管制標準 10
2.2.3.2 鹵乙酸之管制標準 11
2.3影響消毒副產物各物種生成的因素 11
2.3.1前趨物質之官能基 11
2.3.2 pH值 12
2.3.3 溴離子濃度 13
2.4高級氧化應用於金門原水 15
2.4.1金門水質特性 15
2.4.2 UV/H2O2光催化反應 17
第三章 材料與方法 19
3.1研究流程 19
3.3儀器設備 22
3.4消毒副產物生成潛能前質試驗 23
3.5 水樣配製 24
3.6 UV/H2O2氧化反應 24
3.6.1 反應裝置 25
3.6.2 H2O2殘餘分析 25
3.6.3 H2O2中和反應 26
3.7 實驗分析 27
3.7.1 總有機碳分析 27
3.7.2 有機物吸光度之測定 27
3.7.3 離子層析法 27
3.7.4 FTIR量測官能基 27
3.7.5 NMR鑑定官能基 28
3.7.6 THM分析 29
3.7.7 HAA分析 31
第四章 結果與討論 36
4.1 pH值對HOCl及HOBr濃度之影響 36
4.2前質官能基對消毒副產物之影響 39
4.2.1 前質樣品選擇 39
4.2.2 pH對THM、HAA物種生成之影響 39
4.2.3 前質官能基對THM、HAA物種生成之影響 45
4.2.4 pH對THM、HAA總濃度之影響 51
4.2.5 pH值對二鹵、三鹵乙酸生成量之影響 57
4.3 UV/H2O2氧化反應 58
4.3.1 H2O2濃度與NPDOC之降解曲線 58
4.3.2 不同官能基水樣及金門原水降解情形 60
4.3.3 溴離子濃度變化 66
4.3.4 消毒副產物生成潛能之改變 67
4.3.4.1 DBPFP濃度變化 67
4.3.4.2 DBPFP物種之改變 72
第五章 結論與建議 74
參考文獻 77
附 錄 81
dc.language.isozh-TW
dc.subject含鹵乙酸生成潛能zh_TW
dc.subject前質結構zh_TW
dc.subject過氧化氫zh_TW
dc.subjectpHzh_TW
dc.subject溴離子zh_TW
dc.subject三鹵甲烷生成潛能zh_TW
dc.subjectbromideen
dc.subjecthydrogen peroxideen
dc.subjectHAAFPen
dc.subjectTHMFPen
dc.subjectprecursor structuresen
dc.subjectpHen
dc.title高級氧化前處理對消毒副產物生成之影響zh_TW
dc.titleEffects of AOP Pre-treatment on DBPs Formationsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林嘉明,林財富,李奇旺
dc.subject.keyword溴離子,pH,前質結構,三鹵甲烷生成潛能,含鹵乙酸生成潛能,過氧化氫,zh_TW
dc.subject.keywordbromide,pH,precursor structures,THMFP,HAAFP,hydrogen peroxide,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2005-07-26
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
607.38 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved