請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35999完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊照彥 | |
| dc.contributor.author | Chia-Hui Lin | en |
| dc.contributor.author | 林家暉 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:49:26Z | - |
| dc.date.available | 2010-08-01 | |
| dc.date.copyright | 2005-08-01 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | [1] J. D. Joannopoulos, R. D. Mead, and J. N. Winn, Photonic crystals : molding the flow of light. Princeton Univ. Press, Princeton (1995)
[2] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Phys. Rev. Lett. 58, 2059 (1987) [3] S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486 (1987) [4] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, andJ. D. Joannopoulos, “High transmission through sharp bends inphotonic crystal waveguides”, Phys. Rev. Lett. 77, 3787 (1996) [5] K. M. Ho, C. T. Chan and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures”, Phys. Rev. Lett. 65, 3152 (1990) [6] Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos, “Micro- cavities in photonic crystals : mode symmetry, tunability, and coupling efficiency”, Phys. Rev. B, 54, 7837 (1996) [7] Min Qiu, and Sailing He, “Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions”, Phys. Rev. Lett. 61, 12871 (2000) [8] K. B. Chung, and S. H. Kim, “Defect modes in a two-dimensional square-lattice photonic crystal”, Opt. Commun. 209, 229-235 (2002) [9] Shangping Guo and Sacharia Albin, “Numerical techniques for excita-tion and analysis of defect modes in photonic crystals”, Opt. Express11, 1080 (2003) [10] J. P. Berenger, “A perfectly matched layer for the absorption ofelectromagnetic waves”, J. Comput. Phys., 114, 185 (1994) [11] Min Qiu, and Sailing He, “Large complete band gap in two dimen-sional photonic crystals with elliptic air holes”, Phys. Rev. B. 60, 10610 (1999) [12] Zhi-Yuan Li, Ben-Yuan Gu and Guo-Zhen Yang, “Large absolute bandgap in 2D anisotropic photonic crystal”, Phys. Rev. Lett. 81, 2574 (1998) [13] E. Yablonovitch, and T. J. Gmitter, “Photonic band structure: the face-centered-cubic case”, Phys. Rev. Lett. Vol.63, 1950 (1989) [14] S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, “Guided and defect modes in periodic dielectric wave-guides”, J. Opt. Soc. Am. B vol 12, 1267 (1995) [15] C. S. Kee, J. E. Kim, H. Y. Park, and K. J. Chang, “Defect modes in a two-dimensional square lattice of square rods ”, Phy. Rev. E vol 58,7908 (1998) [16] E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demulti- plexing withphotonic crystals”, J. Opt. A: Pure Appl. Opt. 1, 10 (1999) [17] F. Gadot, A. de Lustrac, J. M. Lourtioz, T. Brillat A. Ammouche, and E. Akmansoy, “High-transmission defect modes in two-dimensionalmetallicphotonic crystals”, J. Appl. Phy. Vol 85, 8499 (1999) [18] L. L. Liou and A. Crespo, “Dielectric optical waveguide coupling analysis using two-dimension finite-difference time-domain simula- tion”, Micro-waveand Optical Tech. Lett., 26, 234 (2000) [19] R. Stoffer, H. J. W. M. Hoekstra, R.M. Deridder, E. Van Groesen,and F.P. H. Van Beckum, “Numerical studies of 2-D photoniccrystals :waveguides, coupling between waveguides and filters”, Opt.Quan. Electron., 32, 947 (2000) [20] Allen Taflove, and S.C. Hagness, Computational electrodynamics: the finite difference time domain method, 2nd (Artech House 2000) [21] D. Hermann, M. Frank, K. Busch and P. Wolfle, “Photonic band structure computations”, Opt. Express, 167, 167 (2001) [22] M. Koshiba, “Wavelength division multiplexing and demultiplexingwithphotonic crystal waveguide coupler”, J. Lightwave Technol.19, 1970 (2001) [23] A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelengthdivisionmultiplexing with photonic crystals”, Appl. Opt., 40, 2247(2001) [24] S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguide”, IEEE J.Quantum Electron. 38, 47 (2002) [25] C. Jin, S. Han, X. Meng, B. Cheng, and D. Zhang, “Demultiplexer using directly resonant tunneling between point defects and wave- guides in a photonic crystal”, J. Appl. Phys. 91, 4771 (2002) [26] S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, andD.Nedeljkovic, “Coupling between photonic crystal waveguides”,IEEE J. Quantum Electron. vol. 38, 1349 (2002) [27] A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switchingusing coupled photonic crystal waveguides”, Opt. Express, vol.12,no.20, 1048(2002) [28] M. Tokushima and H. Yamada, “Light propagation in a photonic crystal slab line defect waveguide”, IEEE J. Quan. Electron. vol 38,753 (2002) [29] J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, “Photonic crystal waveguide directional couplers as wavelength selective optical filter”, Opt. Commun. 230, 387-392 (2004) [30] 林振華, 電磁場與天線分析:使用時域有限差分法(FDTD), 全華科技圖書股份有限公司 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35999 | - |
| dc.description.abstract | 光子晶體經適當的設計後將具有光子晶體能隙。其中二維光子晶體在製造上比三維光子晶體容易許多,所以應用的範圍較廣。本論文中先利用平面波展開法,探討光子晶體在TE mode及TM mode的能帶關係,並嘗試藉由調整光子晶體的介電質材料截面形狀與其排列的方式,讓TE mode與TM mode的能帶能夠在相同頻率的部分重疊,在應用時可以說是更加的方便。
另外若在光子晶體結構體中製造出一線缺陷,則可以得到光子晶體光波導,在能帶頻隙內的光波會被侷限在線缺陷通道,即使是彎曲通道高達90度的光波導結構,傳遞的能量也不會有很大的損耗,表示光波仍舊能順利地沿著通道行進。如果要將光波訊號一分為二,對於光子晶體波導結構也是非常容易的,只要在通道結構上設計成對稱的兩個通道,就能得到兩個幾乎完全一樣的光訊號。光子晶體也能應用在多頻道的分波多工系統。利用線缺陷製成的波導結構及具有頻率選擇效果的共振腔,我們可以得到一個具有濾波效用的分波多工系統,使兩種不同的頻率的光波經由分別兩個通道傳遞出來,更可以經由改變點缺陷的參數來控制我們想要的頻率,當然也可以將雙通道設計成一分為四的通道,藉以得到更多希望能到不同頻率的光波。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:49:26Z (GMT). No. of bitstreams: 1 ntu-94-R92543060-1.pdf: 2709647 bytes, checksum: 74542409ddc7cb647557bcadf78e9293 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 第一章 緒論…………………………………………1
1.1 研究動機………………………………………1 1.2 光子晶體簡介…………………………………1 1.3 光子晶體之應用文……………………………2 1.4 文獻回顧………………………………………4 1.5 章節介紹………………………………………5 第二章 平面波展開法………………………………6 2.1 數值方法介紹…………………………………6 2.2 特徵值方程式…………………………………6 2.3 Bloch理論與倒晶格向量………………………8 2.4 平面波展開法…………………………………9 2.5 二維平面波展開………………………………10 2.5.1 TM mode………………………………………10 2.5.2 TE mode………………………………………11 2.6 介電質函數……………………………………12 第三章 時域有限差分法……………………………15 3.2 簡介……………………………………………15 3.2 時域有限差分法………………………………15 3.3 吸收邊界………………………………………20 3.4 穩定因數………………………………………27 第四章 光子晶體能帶分析…………………………28 4.1 平面波展開法計算光子晶體能帶……………28 4.1.1 TM mode………………………………………28 4.1.2 TE mode………………………………………31 4.2 Absolute Band Gap……………………………34 4.3 三維F.C.C與Diamond結構能帶………………48 第五章 光子晶體波導與應用………………………53 5.1 光子晶體波導管………………………………53 5.2 光子晶體分光器………………………………59 5.3 光子晶體多波分工器…………………………61 第六章 結論…………………………………………66 參考文獻………………………………………………68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | Photonic Crystals | en |
| dc.title | 二維光子晶體能帶與應用元件 | zh_TW |
| dc.title | Two Dimensional Photonic Crystals Band Gap and Device of Application | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張家歐,黃家健,黃俊誠 | |
| dc.subject.keyword | 光子晶體, | zh_TW |
| dc.subject.keyword | Photonic Crystals, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
