Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35989
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉開溫(Kai-Wun Yeh)
dc.contributor.authorHsiao-Chi Changen
dc.contributor.author張孝齊zh_TW
dc.date.accessioned2021-06-13T07:49:14Z-
dc.date.available2005-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citationAn, G., Costa, M.A., and Ha, S.B. (1990). Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell 2, 225-233.
Bradshaw, H.D., Jr., Hollick, J.B., Parsons, T.J., Clarke, H.R., and Gordon, M.P. (1990). Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors. Plant Mol Biol 14, 51-59. Bray, E. A. (1997). Plant response to water deficient. Trends in Plant Science 2, 48-54.
Cai, D., Thurau, T., Tian, Y., Lange, T., Yeh, K.W., and Jung, C. (2003). Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Mol Biol 51, 839-849.
Chen, H. C., Klein, A., Xiang, M., Backaus, R. A., and Kuntz, M. (1998). Drought- and wound-induced expression in leaves of a gene encoding a chromoplast carotenoid-associated protein. Plant J. 14, 317-326.
Creelman, R.A., and Mullet, J.E. (1997). Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell 9, 1211-1223.
Creelman, R.A., and Mullet, J.E. (1997). Biosynthesis And Action Of Jasmonates In Plants. Annu Rev Plant Physiol Plant Mol Biol 48, 355-381.
Crmeron, R. K., Dixon, R., and Lamb, C. (1994). Biological induced systemic acquired resistance in Arabidopsis thaliana. Plant J. 5, 715-725.
Darvill, A. G., and Albersheim, P. (1984). Phytoalexins and their elicitors:a defence against microbial infection in plants. Annu. Rev. of Plant Physiol. 35, 243-276.
Delaney, T.P., Friedrich, L., and Ryals, J.A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92, 6602-6606.
Dempsey, D. M., Wobbe, K., and Klessig, D. F. (1993). Resistance and susceptible responses of Arabidopsis thaliana to turnip crinkle virus. Phytopathology 83, 1021-1029.
Doares, S.H., Narvaez-Vasquez, J., Conconi, A., and Ryan, C.A. (1995). Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid. Plant Physiol 108, 1741-1746.
Doares, S.H., Syrovets, T., Weiler, E.W., and Ryan, C.A. (1995). Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A 92, 4095-4098.
Donald, R.G., and Cashmore, A.R. (1990). Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. Embo J 9, 1717-1726.
Donald, R.G., Schindler, U., Batschauer, A., and Cashmore, A.R. (1990). The plant G box promoter sequence activates transcription in Saccharomyces cerevisiae and is bound in vitro by a yeast activity similar to GBF, the plant G box binding factor. Embo J 9, 1727-1735.
Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu Rev Phytopathol 42, 185-209.
Eyal, Y., Meller, Y., Lev-Yadun, S., and Fluhr, R. (1993). A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J 4, 225-234.
Farmer, E.E., and Ryan, C.A. (1990). Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A 87, 7713-7716.
Guiltinan, M.J., Marcotte, W.R., Jr., and Quatrano, R.S. (1990). A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250, 267-271.
Hattori, T., and Nakamura, K. (1987). [Structure and expression of genes coding for sporamin, the major protein of the sweet potato tuberous root]. Tanpakushitsu Kakusan Koso, 261-276.
Hattori, T., Ichihara, S., and Nakamura, K. (1987). Processing of a plant vacuolar protein precursor in vitro. Eur J Biochem 166, 533-538.
Hattori, T., Yoshida, N., and Nakamura, K. (1989). Structural relationship among the members of a multigene family coding for the sweet potato tuberous root storage protein. Plant Mol Biol 13, 563-572.
Hattori, T., Nakagawa, S., and Nakamura, K. (1990). High-level expression of tuberous root storage protein genes of sweet potato in stems of plantlets grown in vitro on sucrose medium. Plant Mol Biol 14, 595-604.
Herde, O., Atzorn, R., Fisahn, J., Wasternack, C., Willmitzer, L., and Pena-Cortes, H. (1996). Localized Wounding by Heat Initiates the Accumulation of Proteinase Inhibitor II in Abscisic Acid-Deficient Plants by Triggering Jasmonic Acid Biosynthesis. Plant Physiol 112, 853-860.
Ishiguro, S., and Nakamura, K. (1992). The nuclear factor SP8BF binds to the 5'-upstream regions of three different genes coding for major proteins of sweet potato tuberous roots. Plant Mol Biol 18, 97-108.
Ishiguro, S., and Nakamura, K. (1994). Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet 244, 563-571.
Ishikawa, A., Ohta, S., Matsuoka, K., Hattori, T., and Nakamura, K. (1994). A family of potato genes that encode Kunitz-type proteinase inhibitors: structural comparisons and differential expression. Plant Cell Physiol 35, 303-312.
Koiwa, H., Bressan, R. A., and Hasegawa, P. M. (1997). Regulation of proteinase ihhibitors and plant defense. Trends in Plant Science 2, 379-384.
Kuc, J. (1984). Phytoalexins and disease resistance mechanisms from a perspective of evolution and adaptation. Ciba Found Symp 102, 100-118.
Lawton, K.A., Potter, S.L., Uknes, S., and Ryals, J. (1994). Acquired Resistance Signal Transduction in Arabidopsis Is Ethylene Independent. Plant Cell 6, 581-588.
Lee, M.W., Qi, M., and Yang, Y. (2001). A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Mol Plant Microbe Interact 14, 527-535.
Maeshima, M., Sasaki, T. and Asahi, T. (1985) Characterization of major proteins in sweet potato tuberous roots. Phytochemistry 24,1899-1902.
Mason, H.S., and Mullet, J.E. (1990). Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell 2, 569-579.
Mason, H.S., DeWald, D.B., and Mullet, J.E. (1993). Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell 5, 241-251.
McConn, M., Creelman, R.A., Bell, E., Mullet, J. E., and Browse, J. (1997). Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 94, 5473-5477.
McGurl, B., and Ryan, C.A. (1992). The organization of the prosystemin gene. Plant Mol Biol 20, 405-409.
McGurl, B., Pearce, G., and Ryan, C.A. (1994). Polypeptide signalling for plant defence genes. Biochem Soc Symp 60, 149-154.
McGurl, B., Pearce, G., Orozco-Cardenas, M., and Ryan, C.A. (1992). Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255, 1570-1573.
McGurl, B., Orozco-Cardenas, M., Pearce, G., and Ryan, C.A. (1994). Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. Proc Natl Acad Sci U S A 91, 9799-9802.
Morikami, A., Matsunaga, R., Tanaka, Y., Suzuki, S., Mano, S., and Nakamura, K. (2005). Two cis-acting regulatory elements are involved in the sucrose-inducible expression of the sporamin gene promoter from sweet potato in transgenic tobacco. Mol Genet Genomics 272, 690-699.
Morris, C.E., and Homann, U. (2001). Cell surface area regulation and membrane tension. J Membr Biol 179, 79-102.
Nibbe, M., Hilpert, B., Wasternack, C., Miersch, O., and Apel, K. (2002). Cell death and salicylate- and jasmonate-dependent stress responses in Arabidopsis are controlled by single cet genes. Planta 216, 120-128.
O'Donnell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O., and Bowles, D.J. (1996). Ethylene as a Signal Mediating the Wound Response of Tomato Plants. Science 274, 1914-1917.
Ohta, S., Hattori, T., Morikami, A., and Nakamura, K. (1991). High-level expression of a sweet potato sporamin gene promoter: beta-glucuronidase (GUS) fusion gene in the stems of transgenic tobacco plants is conferred by multiple cell type-specific regulatory elements. Mol Gen Genet 225, 369-378.
Pearce, G., Johnson, S., and Ryan, C.A. (1993). Purification and characterization from tobacco (Nicotiana tabacum) leaves of six small, wound-inducible, proteinase isoinhibitors of the potato inhibitor II family. Plant Physiol 102, 639-644.
Rushton, P.J., Reinstadler, A., Lipka, V., Lippok, B., and Somssich, I.E. (2002). Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14, 749-762.
Ryals, J., Lawton, K.A., Delaney, T.P., Friedrich, L., Kessmann, H., Neuenschwander, U., Uknes, S., Vernooij, B., and Weymann, K. (1995). Signal transduction in systemic acquired resistance. Proc Natl Acad Sci U S A 92, 4202-4205.
Sequeria, J. A., Muraleedharan, G. N., Hammerschmidt, R., and Safir, G. R. (1991). Significance of phenolic compounds in plant- soil-microbial system. Critical Review in Plant Science 10, 63-121.
Shewry, P.R. (2003). Tuber storage proteins. Ann Bot (Lond) 91, 755-769.
Startman, J. W., and Ryan, C. (1997). Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proc. Natl. Acad. Sci. USA 94, 11085-11089.
Sun, C., Palmqvist, S., Olsson, H., Boren, M., Ahlandsberg, S., and Jansson, C. (2003). A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15, 2076-2092.
Takeda, S., Mano, S., Ohto, M., and Nakamura, K. (1994). Inhibitors of Protein Phosphatases 1 and 2A Block the Sugar-Inducible Gene Expression in Plants. Plant Physiol 106, 567-574.
Takeda, S., Kowyama, Takuchi, Y., Mastuoka, K., Nishimura, M. and Nakamura, K. (1995) Spatial patterns of sucrose-inducible and polygalacturonic acid-inducible expression og genes that encode sporamin and β-amylase in sweet potato. Plant Cell Physiology. 36, 321-333.
Ton, J., De Vos, M., Robben, C., Buchala, A., Metraux, J.P., Van Loon, L.C., and Pieterse, C.M. (2002). Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J 29, 11-21.
Tsukagoshi, H., Saijo, T., Shibata, D., Morikami, A., and Nakamura, K. (2005). Analysis of a sugar response mutant of Arabidopsis identified a novel b3 domain protein that functions as an active transcriptional repressor. Plant Physiol 138, 675-685.
Verberne, M.C., Hoekstra, J., Bol, J.F., and Linthorst, H.J. (2003). Signaling of systemic acquired resistance in tobacco depends on ethylene perception. Plant J 35, 27-32.
Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H., and Ryals, J. (1994). Salicylic Acid Is Not the Translocated Signal Responsible for Inducing Systemic Acquired Resistance but Is Required in Signal Transduction. Plant Cell 6, 959-965.
Wang, S.J., Lin, C.T., Ho, K.C., Chen, Y.M., and Yeh, K.W. (1995). Nucleotide sequence of a sporamin gene in sweet potato. Plant Physiol 108, 829-830.
Wang, S.J., Lan, Y.C., Chen, S.F., Chen, Y.M., and Yeh, K.W. (2002). Wound-response regulation of the sweet potato sporamin gene promoter region. Plant Mol Biol 48, 223-231.
Wasternack, C., and Parthier, B. (1997). Jasmonate-signalled plant gene expression. Trends in Plant Science 2, 302-307.
Xu, R., Goldman, S., Coupe, S., and Deikman, J. (1996). Ethylene control of E4 transcription during tomato fruit ripening involves two cooperative cis elements. Plant Mol Biol 31, 1117-1127.
Xu, Y., Chang, P., Liu, D., Narasimhan, M.L., Raghothama, K.G., Hasegawa, P.M., and Bressan, R.A. (1994). Plant Defense Genes Are Synergistically Induced by Ethylene and Methyl Jasmonate. Plant Cell 6, 1077-1085.
Yalpani, N., and Raskin, I. (1993). Salicylic acid: a systemic signal in induced plant disease resistance. Trends Microbiol 1, 88-92.
Yalpani, N., Leon, J., Lawton, M.A., and Raskin, I. (1993). Pathway of Salicylic Acid Biosynthesis in Healthy and Virus-Inoculated Tobacco. Plant Physiol 103, 315-321.
Yalpani, N., Silverman, P., Wilson, T.M., Kleier, D.A., and Raskin, I. (1991). Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3, 809-818.
Yamene, H., Sugawara, J. Suzuki, Y., Shimamura, E., and Takahashi, N. (1980). Synthesis of jasmonic acid related compounds and their structure-activity relationships on the growth of rice seedlings. Agric. Biol. Chem. 44, 2857-2864.
Yeh, K.W., Chen, J.C., Lin, M.I., Chen, Y.M., and Lin, C.Y. (1997). Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Plant Mol Biol 33, 565-570.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35989-
dc.description.abstractSporamin是甘藷塊根中含量非常豐富的儲存性蛋白質,而且其啟動子活性是可以受到受傷誘導的。因此我們希望能找出sporamin啟動子上負責受傷誘導之順向作用的DNA片段(wound-induced cis-acting element),藉此了解sporamin基因啟動子在植物遭受機械性傷害下的調控機制。利用南方墨漬法得知該基因在甘藷中是為一個基因家族。之後以genomic walking的方式,成功地延長選殖出2條sporamin基因的啟動子。將這兩條新選殖出的啟動子和我們已知的sporamin啟動子:pSPOA以Vector NTI軟體來分析其上和逆境相關之順向作用的DNA片段,我們可以發現這3條啟動子雖然序列不相同,但這些啟動子上皆包含了如NOS-like element、W-box及GCC-like box等和植物防禦機制相關之順向作用的DNA片段。因此這些sporamin基因被調控的機制很有可能是相類似的。在本實驗室之前對於pSPOA這條啟動子缺失片段的研究中發現NOS-like element是為該條啟動子和受傷誘導最為相關的DNA片段,另外SP8a及G-box這2個DNA片段可能具有加強NOS-like element的功能。因此利用合成啟動子的方式(synthetic promoter)來單純化研究NOS-like element及SP8a這兩個順向作用的DNA片段之功能,我們分別構築了含有1、2及4個同一個DNA片段及混合2種DNA片段之合成啟動子,利用轉殖阿拉伯芥的系統來檢測受傷誘導下GUS報導基因的表現模式。在GUS組織染色的結果中顯示NOS-like element及SP8a皆與受傷誘導相關,雖然於受傷誘導下所能誘導的GUS活性仍有差異,但皆可表現於受傷葉片、根、莖與未進行受傷誘導的葉片中,因此此一受傷誘導之傳遞路徑應為系統性的反應(systemic response);另外如果進行受傷誘導之植株已開始抽花絮,該部分組織中的GUS表現量也會增加。
另一方面利用構築甘藷塊根之cDNA library來選殖出更多的sporamin 基因,以期能分析該基因家族成員間之變異性。我們成功的從甘藷塊根之cDNA library中選殖到19條sporamin A以及1條sporamin B。以Vector NTI軟體分析後發現同一群之基因成員間相似度高達90%,兩群基因之相似度也高達80%。而根據現有的序列可再將A群基因細分為兩個sub-family,其相似度則高達95%。而這些sporamin序列上的差異多是來自於5’及3’-UTR之變異,此結果與Hattori於1989年所提出之理論相類似。另一方面如果將sporamin基因以軟體預測轉譯成氨基酸序列後,發現其活性區域組成之氨基酸序列並無改變,因此這些蛋白質的活性強度可能是相類似的。而以電腦軟體分析我們sporamin基因於序列上可能發生同義與非同義之取代位置,可得到該基因家族KA/KS<1.0,因此在演化上應是屬於purifying evolution。
zh_TW
dc.description.abstractSporamin is a storage protein of sweet potato tuber, and the expression of sporamin gene in leaves is wound-inducible. In order to define the wound-response cis-acting elements of the sporamin promoter, the genomic walking method was used to clone upstream promoter regions. Three segments of promoter region of this gene family were obtained. Although the sequences of these promoters are various, they all contain almost the same cis-acting elements, such as W-box and GCC-box. Therefore, the expression pattern of each gene member may be quite similar. Our previous data demonstrated that a sporamin promoter : SP1 (pSPOA) is wounding-induced in the transgenic tobacco by promoter-GUS fusion assay. The GUS staining results indicate that the sequences containing the NOS-like element confer the most wound-induced activity, the SP8a and G-box may contribute to enhance the effect of NOS-like element. So we use the synthetic promoter method to identify each cis-acting element. Constructions with one, two and four copies of each element were tested for its wounding-induced activity by promoter-GUS fusion assays. We also tested the constructs with mixed motifs in transgenic Arabidopsis. The GUS staining and GUS quantitative results showed that both the NOS-like element and the SP8a motif contribute to the GUS expression under mechanical wounding in transgenic Arabidopsis. The NOS-like element and SP8a motif indeed confer wounding-induced activity when working alone, but the expression level of the reporter gene is higher when the number of motif increased. Although the induced level of GUS proteins was different between these constructs, the expression patterns were quite similar. The induced GUS proteins were expressed in wounded leaf, root, stem, and unwounded leaves. So the wounding response might be a systemic effect.
We also constructed a cDNA library of sweet potato tuberous root to clone more sporamin genes, because we intend to investigate the polymorphisms among these genes. Twenty sporamin genes were cloned, 19 of these genes belong to the sporamin A and only one gene belong to the sporamin B. The homology between these two groups is 80%, and the homology within each group is about 90%. We also divide the sporamin A into two sub-family, and the homology within each sub-family is 95%. The sequence polymorphisms are taking place almost in the 5’, and 3’-UTR, these findings are resemble with the theory proposed by Hattori in 1989. We found that the active domain within amino acid sequences of these sporamin genes were identical, so the activities of these proteins might be the same. And the evolution prediction of this gene family tends to purifying evolution pathway.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:49:14Z (GMT). No. of bitstreams: 1
ntu-94-R91226021-1.pdf: 992374 bytes, checksum: 23d6d359f7cd76d02fe3f73aa2c7572f (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要…………………………………………………………………2
英文摘要…………………………………………………………………4
第一章 前言
第一節 植物的防禦機制與受傷訊息………………………………6
第二節 甘藷中的sporamin基因與其啟動子……………………….10
第三節 合成啟動子………………………………………………..13
第四節 基因演化與其多型性……………………………………..15
第五節 本論文之研究方向………………………………………..16
第二章 材料與方法
一、實驗材料………………………………………………………..17
二、實驗方法
第一節 釣取sporamin基因之啟動子………….………………….17
第二節 合成啟動子之構築………………………………………..24
第三節 阿拉伯芥之轉殖…………………………………………..28
第四節 阿拉伯芥轉殖株於受傷誘導下之分析…………………..30
第五節 南方墨漬法………………………………………………..33
第六節 甘藷塊根cDNA library的建構…………………………...35
第七節 甘藷sporamin基因的選殖………………………………..41
第三章 實驗結果
第一節 釣取sporamin基因之啟動子………………….………….45
第二節 合成啟動子之構築………………………………………..46
第三節 阿拉伯芥之轉殖…………………………………………..47
第四節 阿拉伯芥轉殖株於受傷誘導下之分析…………………..48
第五節 甘藷sporamin基因之基因數分析………………………..50
第六節 甘藷塊根cDNA library的建構…………………………...51
第七節 甘藷sporamin基因的選殖…………………….………….51
第四章 討論
第一節 機械性受傷誘導之cis-acting element…………54
第二節 甘藷sporamin基因之變異性……………………..56
附圖…………………………………………………………………..58
參考文獻……………………………………………………………..84
dc.language.isozh-TW
dc.title甘藷sporamin基因啟動子上順向作用的DNA片段之功能性分析及sporamin基因家族成員間變異性之研究zh_TW
dc.titleFunctional analyses of cis-acting elements of sporamin gene promoter from sweet potato and investigation of the polymorphisms between sporamin gene membersen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林長平,鄭石通,謝旭亮,王淑珍
dc.subject.keyword胰蛋白&#37238,抑制因子,受傷誘導,基因家族,zh_TW
dc.subject.keywordsporamin,wounding,trypsin inhibitor,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2005-07-26
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
969.12 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved