請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35980
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭尊仁(Tsun-Jen Cheng) | |
dc.contributor.author | Li-Chen Chen | en |
dc.contributor.author | 陳麗貞 | zh_TW |
dc.date.accessioned | 2021-06-13T07:49:06Z | - |
dc.date.available | 2005-08-03 | |
dc.date.copyright | 2005-08-03 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-25 | |
dc.identifier.citation | Atkinson RW, Bremner SA, Anderson HR, Strachan DP, Bland JM, de Leon AP. Short-term associations between emergency hospital admissions for respiratory and cardiovascular disease and outdoor air pollution in London. Arch Environ Health. 54: 398-411, 1999.
Brown DM, Stone V, Findlay P, MacNee W, Donaldson K. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med. 57: 685-91, 2000. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol. 175: 191-9, 2001. Borm PJ, Schins RP, Albrecht C. Inhaled particles and lung cancer, part B: paradigms and risk assessment. International Journal of Cancer. 110: 3-14, 2004. Cassee FR, Muijser H, Duistermaat E, Freijer JJ, Geerse KB, Marijnissen JC, Arts JH. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model. Archives of Toxicology. 76: 277-86, 2002. Catheart R, Schwiers E, Ames BN. Detection of picomole levels of hydroperoxides using fluorescent dichlorofluorescein assay. Anal. Biochem.134: 111-6, 1983. Chang CC, Chiu HF, Wu YS, Li YC, Tsai ML, Shen CK, Yang CY. The Induction of Vascular Endothelial Growth Factor by Ultrafine Carbon Black Contributes to the Increase of Alveolar-Capillary Permeability. Environmental Health Perspectives. 113: 454-60, 2005. Cheng TJ, Kao HP, Chan CC, Chang WP. Effects of ozone on DNA single-strand breaks and 8-oxoguanine formation in A549 cells. Environ Res. 93: 279-84, 2003. Devasagayam TP, Steenken S, Obendorf MS, Schulz WA, Sies H. Formation of 8-hydroxy(deoxy)guanosine and generation of strand breaks at guanine residues in DNA by singlet oxygen. Biochemistry. 30: 6283-9, 1991. Diaz-Llera S, Gonzalez-Hernandez Y, Prieto-Gonzalez EA, Azoy A. Genotoxic effect of ozone in human peripheral blood leukocytes. Mutation Research. 517:13-20, 2002. Dick CA, Brown DM, Donaldson K, Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhalation Toxicology. 15: 39-52, 2003. Don Porto Carero A, Hoet PH, Verschaeve L, Schoeters G, Nemery B. Genotoxic Effects of Carbon Black Particles, Diesel Exhaust Particles, and Urban Air Particulates and Their Extracts on a Human Alveolar Epithelial Cell Line (A549)and a Human Monocytic Cell Line (THP-1). Environ Mol Mutagen. 37: 155-63, 2001. Donaldson K, Beswick PH, Gilmour PS. Free radical activity associated with the surface of particles: a unifying factor in determining biological activity?. Toxicology Letters. 88: 293-8, 1996. Driscoll KE. TNFα and MIP-2: role in particle-induced inflammation and regulation by oxidative stress. Toxicology Letters. 112-113:177-83, 2000. Floyd RA, West MS, Eneff KL, Hogsett WE, Tingey DT. Hydroxyl free radical mediated formation of 8-hydroxyguanine in isolated DNA. Archives of Biochemistry & Biophysics. 262: 266-72, 1988. Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine. Proceedings of the National Academy of Sciences of the United States of America. 87: 4533-7, 1990. Frankel K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol. Ther. 53: 127-66, 1992. Gavett SH, Madison SL, Dreher KL, Winsett DW, McGee JK, and Costa DL. Metal and Sulfate Composition of Residual Oil Fly Ash Determines Airway Hyperreactivity and Lung Injury in Rats. Environ Res. 72: 162-72, 1997. Gerald M et al. Free radicals : biology and detection by spin trapping. Rosen et al., New York : Oxford University Press, 1999. Ghio AJ., Kennedy TP., Whorton AR., Crumbliss AL., Hatch GE., Hoidal JR. Role of surface complexed iron in oxidant generation and lung inflammation induced by silicates. American Journal of Physiology. 263: L511-8, 1992. Gilmour PS., Ziesenis A., Morrison ER., Vickers MA., Drost EM., Ford I., Karg E., Mossa C., Schroeppel A., Ferron GA., Heyder J., Greaves M., MacNee W., Donaldson K. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicology & Applied Pharmacology. 195: 35-44, 2004. Granum B, Gaarder PI, Lovik M. IgE adjuvant effect caused by particles - immediate and delayed effects. Toxicology. 156: 149-59, 2001. Gauderman WJ, Avol E, Gilliland F, Vora H. Thomas D, Berhane K, McConnell R, Kuenzli N, Lurmann F, Rappaport E, Margolis H, Bates D, Peters J. The effect of air pollution on lung development from 10 to 18 years of age. New England Journal of Medicine. 351:1057-67, 2004. Halliwell B. Free radicals in Biology and Medicine. Oxiford unversity Press. New York. USA. 1999. Haney JT, Connor TH, Li L. Detection of ozone-induced single strand breaks in murine broncholalveolar lavage cells acutely exposed in vivo. Inhal Toxicol. 11: 331-41, 1999. Hu CW, Wu MT, Chao MR, Pan CH, Wang CJ, Swenberg JA, Wu KY. Comparison of analyses of urinary 8-hydroxy-2'-deoxyguanosine by isotope-dilution liquid chromatography with electrospray tandem mass spectrometry and by enzyme-linked immunosorbent assay. Rapid Communications in Mass Spectrometry. 18: 505-10, 2004. Huang X, Frenkel K, Klein CB, Costa M. Nickel induces increased oxidants in intact cultured mammalian cell as detected by dichlorofluorescein fluorescence. Toxicol Appl Phammacol. 120: 29-36, 1993. Inoue S, Kawanishi S. Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS Letters. 371: 86-8, 1995. Kasai H, Crain PF, Kuchino Y, Nishimura S, Ootsuyama A, Tanooka H. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis. 7: 1849-51, 1986. Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research. 387: 147-63, 1997. Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, Nunomura A, Castellani RJ, Perry G, Smith MA, Itoyama Y. Systemic increase of oxidative nucleic acid damage in Parkinson's disease and multiple system atrophy. Neurobiology of Disease. 9: 244-8, 2002. Kline JN, Cowden JD, Hunninghake GW, Schutte BC, Watt JL, Wohlford-Lenane CL, Powers LS, Jones MP, Schwartz DA. Variable airway responsiveness to inhaled lipopolysaccharide. Am J Respir Crit Care Med. 160: 297-303,1999. Knaapen AM, Borm PJ, Albrecht C, Schins RP. Inhaled particles and lung cancer. Part A: Mechanisms. International Journal of Cancer. 109: 799-809, 2004. Knaapen AM, Seiler F, Schilderman PA, Nehls P, Bruch J, Schins RP, Borm PJ. Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radical Biology & Medicine. 27: 234-40, 1999. Kodavanti UP, Schladweiler MC, Ledbetter AD, Watkinson WP, Campen MJ, Winsett DW, Richards JR, Crissman KM, Hatch GE, Costa DL. The spontaneously hypertensive rat as a model of human cardiovascular disease: evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter. Toxicology & Applied Pharmacology. 164: 250-63, 2000. LeBel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 5: 227-31, 1992. Leoncini G, Maresca M, Colao C. Oxidative metabolism of human platelets. Biochem. Int. 25: 647-55, 1991. Li CS, Wu KY, Chang-Chien GP, Chou CC. Analysis of Oxidative DNA Damage 8-Hydroxy-2'-deoxyguanosine as a Biomarker of Exposures to Persistent Pollutants for Marine Mammals. Environ. Sci. Technol. 39, 2455-60, 2005. Li XY, Brown D, Smith S, MacNee W, Donaldson K. Short-term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhalation Toxicology. 11: 709-31, 1999. Loft S, Fischer-Nielsen A, Jeding IB, Vistisen K, Poulsen HE, 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. Journal of Toxicology & Environmental Health. 40: 391-404, 1993. Lu FJ, Lin JT. Wang HP, Huang WC. A simple, sensitive, non-stimulated photon counting system for detection of superoxide anion in whole blood. Experientia. 52: 141-4, 1996. Morawska L, Moore MR, Ristovski ZD. Health Impacts of Ultrafine Particles - Desktop Literature Review and Analysis. Australian Department of the Environment and Heritage. 2004. Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B. Passage of Inhaled Particles Into the Blood Circulation in Humans. Circulation. 105: 411-14, 2002a. Nemmar A, Hoylaerts MF, Hoet PH, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery B. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. American Journal of Respiratory & Critical Care Medicine. 166: 998-1004, 2002b. Oberdorster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J. Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environmental Health Perspectives. 97: 193-9, 1992. Oberdorster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder AC. Acute pulmonary effects of ultrafine particles in rats and mice. Research Report - Health Effects Institute.96: 5-74; disc. 75-86, 2000. Oberdorster G, Gelein RM, Ferin J, Weiss B. Association of particle air pollution and acute mortality:involvement of ultrafine particles?Inhal Toxicol. 7: 111-24, 1995. Ohtoshi T, Takizawa H, Okazaki H, Kawasaki S, Takeuchi N, Ohta K. Ito K. Diesel exhaust particles stimulate human airway epithelial cells to produce cytokines relevant to airway inflammation in vitro. Journal of Allergy & Clinical Immunology. 101:778-85, 1998. Pekkanen J, Timonen KL, Ruuskanen J, Reponen A, Mirme A. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environmental Research. 74: 24-33, 1997. Poli P, Buschini A, Restivo FM, Ficarelli A, Cassoni F, Ferrero I, Rossi C. Comet assay application in environmental monitoring: DNA damage in human leukocytes and plant cells in comparison with bacterial and yeast tests. Mutagenesis. 14: 547-56, 1999. Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 287: 1132-41, 2002. Pope CA 3rd, Hansen ML, Long RW, Nielsen KR, Eatough NL, Wilson WE, Eatough DJ. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environmental Health Perspectives. 112: 339-45, 2004. Prahalad AK, Soukup JM, Inmon J, Willis R, Ghio AJ, Becker S, Gallagher JE. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry. Toxicol Appl Pharmacol. 158: 81-91, 1999. Rahman I, MacNee W. Role of transcription factors in inflammatory lung diseases. Thorax. 53: 601-12, 1998. Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occupational & Environmental Medicine. 61: 442-7, 2004. Rojas E, Valverde M, Lopez MC, Naufal I, Sanchez I, Bizarro P, Lopez I, Fortoul TI, Ostrosky-Wegman P. Evaluation of DNA damage in exfoliated tear duct epithelial cells from individuals exposed to air pollution assessed by single cell gel electrophoresis assay. Mutat Res. 468: 11-17, 2000. Stringer B, Kobzik L. Environmental particulate-mediated cytokine production in lung epithelial cells (A549): role of preexisting inflammation and oxidant stress. Journal of Toxicology & Environmental Health Part A. 55: 31-44, 1998. Takeuchi T, Nakajima M, Ohta Y, Mure K, Takeshita T, Morimoto K. Evaluation of 8-hydroxydeoxyguanosine, a typical oxidative DNA damage, in human leukocytes. Carcinogenesis. 15: 1519-23, 1994. The Royal society and the Royal Academy of Engineering. Nanoscience and nanotechnologies: opportunities and uncertainties. Nanotechnology and Nanoscience, 2004. Thompson AB, Robbins RA, Romberger DJ, et al. Immunological functions of the pulmonary epithelium. Eur Respir J. 8: 127-49, 1995. Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance?. Hypertension. 44: 248-52, 2004. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental & Molecular Mutagenesis. 35: 206-21, 2000. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med. 27: 612-6, 1999. Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 184: 172-179, 2002. Yoshioka A, Kishino Y. Vascular changes involved in pulmonary hemorrhage of stroke-prone spontaneously hypertensive rats. Tokushima Journal of Experimental Medicine. 36: 1-10, 1989. Zhang Q, Kusaka Y, Sato K, Nakakuki N, Kohyama N, Donaldson K. Differences in the extent of inflammation caused by intracheal exposure to three ultrafine metals: Role of free radicals. J Toxicol Environ Health A 53: 423-438, 1998. 雷侑蓁。空氣懸浮微粒心肺毒性研究。民國94年,台灣大學職業醫學與工業衛生研究所博士論文。 鄭伊玲。肺部上皮內襯液體對於微粒引起氧化傷害之影響。民國93年,台灣大學職業醫學與工業衛生研究所碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35980 | - |
dc.description.abstract | 隨著奈米科技的發展,人造奈米材料被廣泛的應用在科學、技術及醫學上。奈米材料可以使用在一些較大粒徑微粒所無法達到的特殊目的上,但奈米材料跟較大粒徑微粒相比較,可能具有更高的生物活性。奈米微粒可以懸浮在空氣中經由呼吸、食入或直接穿透皮膚進入人體,也有可能進入地下水系統改變生物活性、進入食物鏈,對生物及環境造成衝擊,目前針對奈米材料的環境、安全及衛生規定尚未完備。
最近的研究顯示人造奈米微粒造成健康危害可能與反應性氧化物種(reactive oxygen species, ROS)有關。因此本研究將探討奈米微粒ROS的產生與微粒粒徑大小及表面積之相關性,並進一步以自發性高血壓大鼠(spontaneous hypertensive rat, SHR)及健康的SD(Sprague Dawley)大鼠動物模式,探討奈米微粒的暴露與氧化壓力、肺部發炎反應之相關。 非細胞系統利用15、51及95nm的奈米碳黑微粒(ultrafine carbon black, ufCB),於200、400及800μg/ml下暴露一小時,再以2',7'-dichlorofluorescin(DCF)螢光分析法評估ROS的產生。動物實驗部分,分別以SHR及SD大鼠為實驗動物,以氣管灌注15、51及95nm的ufCB 500及1000μg,並以磷酸生理食鹽水(phosphate buffered saline, PBS)為控制組,暴露24小時後犧牲,取肺泡灌洗液分析肺部發炎指標;另外分析血清8-hydroxy-2'-deoxyguanosine(8-OHdG)及周邊白血球DNA單股斷裂(DNA single-strand breaks, DNA SSB)情形。 實驗結果顯示,在非細胞系統中,各種粒徑之ufCB ROS的產生,隨重量濃度增加而增加,在相同重量濃度下,粒徑越小的CB產生的ROS越高,有趣的是,總表面積與ROS產生有高度相關(R2=0.83)。動物實驗部分,氣管灌注1000µg ufCB的SHR,與控制組比較,暴露15nm肺泡灌洗液中嗜中性球百分比顯著增加(P<0.05),暴露51及95nm則沒有顯著差異;暴露15nm之SHR,其血清8-OHdG有增加的趨勢,雖然無統計上顯著差異,此外,周邊白血球DNA SSB tail monent及% of tail length亦較控制組高(P<0.05),然而暴露51及95nm的氧化傷害情形反而隨著暴露劑量增加而降低。以SD大鼠為實驗動物部分,研究結果發現暴露15nm之SD大鼠,其肺泡灌洗液中總細胞數及嗜中性球百分比都隨著暴露劑量增加而增加,且暴露高、低劑量組與控制組比較,嗜中性球百分比都有顯著較高(P<0.05);但是在氧化傷害部分,8-OHdG及DNA SSB都沒有顯著升高的情形。進一步綜合比較氧化壓力傷害指標及各發炎指標的相關性,在SHR部分發現實驗動物肺泡灌洗液中總細胞數與血清8-OHdG有顯著相關(R2=0.23,P<0.05),而肺泡灌洗液中嗜中性球百分比與周邊白血球DNA SSB各參數指標也都有達到統計上顯著相關(tail moment R2=0.36、% of tail length R2=0.27、% of tail intensity R2=0.25,P<0.05);另外,血清8-OHdG與周邊白血球DNA SSB各參數指標也有顯著相關(tail moment:R2=0.6、% of tail length:R2=0.44、% of tail intensity:R2=0.43,P<0.05)。在SD大鼠部分,血清8-OHdG與肺泡灌洗液中的乳酸脫氫酵素(lactate dehydrogenase, LDH)有顯著相關(R2=0.21,P<0.05),血清8-OHdG、DNA SSB與其它發炎指標則沒有顯著相關。比較SHR與SD大鼠肺部發炎情形及血清8-OHdG的差異,不論是實驗動物的基本值、隨暴露劑量或總表面積增加的趨勢,SHR肺泡灌洗液中總細胞數及血清8-OHdG都比SD大鼠來得高;以控制組校正後,肺泡灌洗液中總細胞數隨暴露劑量增加的趨勢,SHR也較SD大鼠來得高,各DNA損傷指標隨暴露劑量增加的趨勢,在暴露最小粒徑微粒之SHR也都較SD大鼠來得高。 總結來說,本研究發現奈米微粒能產生ROS,而ROS的產生與微粒總表面積有關,動物實驗部分證明奈米微粒會增加體內ROS的產生及肺部發炎反應,在SHR易感性動物實驗發現暴露ufCB會加重肺部發炎及氧化傷害的表現,且與微粒總表面積有關。本研究也指出易感性動物對於肺部發炎及氧化傷害的危險性增加,這部份具有重要的政策意涵,但需要有更多進一步的研究去釐清其相關機制。 | zh_TW |
dc.description.abstract | Nanoparticles are increasingly used in science, technology and medicine, and they are produced for specific purposes which cannot be met by large particles and bulk material. However, recent evidences reveal that nanoparticles are likely to be highly reactive with biological systems. Currently environmental, healthy and safety regulation regarding to nanoparticles have not be well-established.
Recent studies indicated that artificial nanoparticals-induced health effects may be associated with the generation of reactive oxygen species (ROS). However, the exact relationship remains unclear. In order to investigate the possible mechanism, we used a cell-free system study to verify the relationship between particle size, total surface area and ROS generation. Further, we investigated the effects of nanoparticle exposure on oxidative stress and pulmonary inflammation on spontaneously hypertensive rats (SHR) and Sprague Dawley (SD) rats. In cell-free system, ultrafine carbon black (ufCB) with average diameter of 15, 51 and 95nm were suspended in phosphate buffered saline (PBS) in 200, 400 and 800 μg/ml for 1hr. DCF (2’,7’-dichlorofluorescin) assay was used to determine the ROS generation of ufCB. In animal study, SHR and SD rats were intratracheally instillation of 15, 51 and 95nm ufCB in 500 and 1000μg, separately. Animals administrated PBS were treated as control group. Animals were sacrificed 24hr after treatment. Bronchoalveolar lavage fluid (BALF) was collected for pulmonary inflammation analysis. Serum 8-OHdG (8-hydroxy-2'-deoxyguanosine) and peripheral blood DNA single-strand breaks (DNA SSB) were determined to evaluate the effects of oxidative stress. Our results revealed that the generation of ROS increased with the instilled mass concentration in each particle size. At the same mass concentration, smaller particle size of CB produced greater ROS. Interestingly, the generation of ROS was highly correlated with total surface area of particles (R2=0.83). In animal study, SHR treated with 1000µg of 15nm ufCB had significantly increased the proportion of neutrophils in BALF as compared to SHR with larger particle treatment. No significant increased pulmonary inflammation was observed in SHR treated with 51 and 95 nm ufCB at same dose. SHR with 15nm ufCB treatment demonstrated increased serum 8-OHdG, although it did not reach statistical difference. In addition, SHR treated with 15nm ufCB showed significant increased DNA SSB in tail moment and % of tail length as compare to the controls (P<0.05). However, the DNA SSB was reduced with the increasing ufCB treatment with 51 and 95 nm in SHR. In SD rat model, we found the proportion of neutrophils in BALF was significantly increased in SD rats treated with 15nm ufCB as compared to the controls (P<0.05). However, there was no significant elevation of serum 8-OHdG and peripheral blood DNA SSB after ufCB treatment. In SHR, interestingly, we found correlation between oxidative stress and pulmonary inflammation, BALF total cells correlated with serum 8-OHdG (R2=0.23; P<0.05) and the proportion of neutrophils in BALF correlated with peripheral blood DNA SSB (tail moment R2=0.36, % of tail length R2=0.27, % of tail intensity R2=0.25; P<0.05). We also found that serum 8-OHdG statistically correlated with peripheral blood DNA SSB (tail moment R2=0.6, % of tail length R2=0.44, % of tail intensity R2=0.43; P<0.05). In SD rats, serum 8-OHdG correlated with BALF LDH (lactate dehydrogenase) (R2=0.21; P<0.05). However, there was no significant association found between 8-OHdG, peripheral blood DNA SSB and other pulmonary inflammation indicators. Serum 8-OHdG and BALF total cells at baseline or their trends for either exposure dose or total surface area in SHR was higher than those in SD rats. After adjusting for control, the trend of BALF total cells in SHR was higher than those in SD rats. However, the trend of DNA damage indicators, which was adjusted for control, in SHR was higher than those in SD rats only for the exposure to 15nm nanoparticles. In summary, we found nanoparticles generated ROS in cell free system and the generation of ROS was associated with total surface area of particle. In vivo study found that exposure to nanoparticles caused ROS generation and pulmonary inflammation. In SHR susceptible animal study we found that exposure to ufCB would increase burden on lung inflammation and oxidative damage which were related to total surface area of particles. Our study also indicates that susceptible animals maybe subject to increased risk of lung inflammation and oxidative DNA damage. This may have important policy implication. However, more studies are needed to clarify the above findings. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:49:06Z (GMT). No. of bitstreams: 1 ntu-94-R92841020-1.pdf: 1706758 bytes, checksum: 1d40ddceaac108e8d34bb5899226155b (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 摘要……………………………………………………………………1
Abstract………………………………………………………………3 目錄……………………………………………………………………6 圖、表及附錄目錄……………………………………………………8 第一章 前言……………………………………………………………11 第二章 文獻回顧………………………………………………………14 2.1 奈米材料的應用及特性…………………………………………14 2.2 奈米微粒健康風險………………………………………………14 2.3 微粒流行病學研究………………………………………………15 2.4 奈米微粒毒理研究………………………………………………16 2.4.1奈米微粒與肺部毒性……………………………………………16 2.4.2 奈米微粒與ROS相關研究………………………………………17 2.4.3 奈米微粒的表面積效應………………………………………17 2.4.4 奈米微粒其它相關毒理研究…………………………………18 2.5 肺部發炎及發炎反應指標………………………………………18 2.6 反應性含氧物種與氧化壓力……………………………………20 2.7 氧化傷害效應指標………………………………………………22 2.7.1 DNA單股斷裂分析……………………………………………22 2.7.2 8-OHdG含量分析………………………………………………23 2.8 非細胞系統自由基分析…………………………………………25 2.9 易感性實驗動物…………………………………………………27 第三章 材料與方法……………………………………………………28 3.1 整體實驗設計……………………………………………………28 3.2 微粒………………………………………………………………28 3.3 實驗動物…………………………………………………………28 3.4 非細胞系統自由基分析:DCF螢光分析法………………………29 3.5 動物實驗…………………………………………………………29 3.5.1 微粒氣管內灌注、肺泡灌洗及採血…………………………29 3.5.2 肺泡灌洗液發炎指標分析……………………………………30 3.5.3 周邊白血球DNA單股斷裂分析…………………………………30 3.5.4 血清8-OHdG含量分析…………………………………………30 3.6 統計分析方法……………………………………………………31 第四章 實驗結果………………………………………………………32 4.1 非細胞系統自由基分析…………………………………………32 4.2 動物實驗…………………………………………………………32 4.2.1 肺泡灌洗液發炎指標分析……………………………………32 4.2.2 周邊白血球DNA單股斷裂分析…………………………………34 4.2.3 血清8-OHdG含量分析…………………………………………35 4.2.4 8-OHdG含量與DNA單股斷裂及各發炎指標相關性分析……36 第五章 討論與結論……………………………………………………37 5.1 影響非細胞系統自由基分析相關因素…………………………37 5.2 動物實驗…………………………………………………………39 5.2.1 暴露ufCB對肺部發炎的影響…………………………………39 5.2.2 暴露ufCB造成氧化傷害的影響………………………………42 5.2.3 暴露ufCB氧化傷害與發炎指標相關性討論…………………45 5.3 結論與建議………………………………………………………46 第六章 參考文獻……………………………………………………48 圖、表及附錄目錄 圖一、非細胞系統中暴露不同粒徑及重量濃度ufCB 1小時後之螢光值分析結果….55 A、非細胞系統中暴露ufCB之螢光值實驗一……………………….…………55 B、非細胞系統中暴露ufCB之螢光值實驗二……………………….…………55 C、非細胞系統中暴露ufCB之螢光值實驗三……………………………….....55 D、非細胞系統中暴露ufCB螢光值三次實驗平均…………………….……....56 圖二、非細胞系統中暴露不同粒徑及重量濃度ufCB 1小時後,總表面積與螢光值分析結果…………….…………………………………………………….….…......57 圖三、SHR暴露不同粒徑及重量濃度ufCB 24小時後,肺泡灌洗液中各發炎指標分析結果………………………………………………………………….…………...58 A、SHR暴露ufCB BALF總細胞數……………………………………………58 B、SHR暴露ufCB BALF嗜中性球百分比……………………………………58 C、SHR暴露ufCB BALF巨噬細胞百分比……………………………………58 D、SHR暴露ufCB BALF LDH含量…………………………………….…….58 E、SHR暴露ufCB BALF總蛋白質含量………………………………………58 圖四、SD大鼠暴露不同粒徑及重量濃度ufCB 24小時後,肺泡灌洗液中各發炎指標分析結果…………………………………………………….……………………...59 A、SD大鼠暴露ufCB BALF總細胞數………………………………………...59 B、SD大鼠暴露ufCB BALF嗜中性球百分比……………………..……..…...59 C、SD大鼠暴露ufCB BALF巨噬細胞百分比………………………………...59 D、SD大鼠暴露ufCB BALF LDH含量……………………………………..…59 E、SD大鼠暴露ufCB BALF總蛋白質含量…………………………………...59 圖五、比較SHR及SD大鼠以控制組校正後之各肺部發炎指標百分比及差異…….60 A、實驗動物與控制組BALF總細胞數比較…………………...…..…………60 B、實驗動物與控制組BALF嗜中性球百分比比較…………….…………….61 C、實驗動物與控制組BALF巨噬細胞百分比比較…………….…………….62 圖六、比較SHR及SD大鼠暴露不同粒徑及重量濃度ufCB 24小時後,總表面積與肺泡灌洗液中各發炎指標分析結果……………………………………………..63 圖七、SHR暴露不同粒徑及重量濃度ufCB 24小時後,周邊白血球DNA單股斷裂各參數指標分析結果…………………………………………………………………64 A、SHR暴露ufCB DNA SSB tail moment參數指標…………….…………….64 B、SHR暴露ufCB DNA SSB % of tail length參數指標………….…………...64 C、SHR暴露ufCB DNA SSB % of tail intensity參數指標……………………64 圖八、SD暴露不同粒徑及重量濃度ufCB 24小時後,周邊白血球DNA單股斷裂各參數指標分析結果…………………………………………………………………65 A、SD暴露ufCB DNA SSB tail moment參數指標…………………………….65 B、SD暴露ufCB DNA SSB % of tail length參數指標………………………...65 C、SD暴露ufCB DNA SSB % of tailintensity參數指標………………………65 圖九、比較SHR及SD大鼠以控制組校正後之DNA SSB各參數指標百分比及差異…66 A、實驗動物與控制組DNA SSB tail moment比較…………………………….66 B、實驗動物與控制組DNA SSB % of tail length比較…………………………67 C、實驗動物與控制組DNA SSB % of tail intensity比較………………………68 圖十、比較SHR及SD大鼠暴露ufCB總表面積與DNA單股斷裂各參數指標分析結果…………………………………………………………………………………....69 圖十一、SHR暴露不同粒徑及重量濃度ufCB 24小時後,血清8-OHdG含量分析結果………………………………………………………….………………….70 圖十二、SD暴露不同粒徑及重量濃度ufCB 24小時後,血清及肺泡灌洗液中8-OHdG含量分析結果….………………………………………………………...………71 A、SD暴露ufCB血清8-OHdG含量………..……………………..………....71 B、SD暴露ufCB BALF 8-OHdG含量………………………………….……71 圖十三、比較SHR及SD大鼠以控制組校正後之血清8-OHdG百分比及差異……72 圖十四、比較SHR及SD大鼠暴露不同粒徑及重量濃度ufCB24小時後,總表面積與血清8-OHdG分析結果……………………………………………………………73 圖十五、SHR暴露不同粒徑及重量濃度ufCB 24小時後,血清8-OHdG與肺泡灌洗液中各發炎指標相關性比較………………………………………………………74 A、血清8-OHdG與BALF總細胞數相關性……………………………….......74 B、血清8-OHdG與BALF嗜中性球百分比相關性………………………..….74 C、血清8-OHdG與BALF LDH含量相關性………………………………….74 D、血清8-OHdG與BALF總蛋白質含量相關性……………..……………….74 圖十六、SHR暴露不同粒徑及重量濃度ufCB 24小時後,肺泡灌洗液嗜中性球百分比與周邊白血球DNA單股斷裂各參數指標相關性比較…………………….….75 A、BALF嗜中性球百分比與DNA SSB tail moment參數指標相關…….……75 B、BALF嗜中性球百分比與DNA SSB % of tail length參數指標相關性…...75 C、BALF嗜中性球百分比與DNA SSB % of tail intensity參數指標相關性…75 圖十七、SHR暴露不同粒徑及重量濃度ufCB 24小時後,血清8-OHdG與周邊白血球DNA單股斷裂各參數指標相關性比較…………………………………….76 A、血清中8-OHdG與DNA SSB tail moment參數指標相關性………………76 B、血清中8-OHdG與DNA SSB % of tail length參數指標相關性…………..76 C、血清中8-OHdG與DNA SSB % of tail intensity參數指標相關性………..76 表一、SHR及SD大鼠各肺部發炎指標及氧化傷害指標比較…………………………77 A、SHR及SD大鼠暴露PBS控制組比較……………………………………..77 B、SHR及SD大鼠不考慮暴露粒徑及濃度加總平均比較……………………77 C、SHR及SD大鼠暴露15nm ufCB 1000µg比較…………………………….78 D、SHR及SD大鼠暴露15nm ufCB 500µg比較………………………………78 E、SHR及SD大鼠暴露51nm ufCB 1000µg比較……………………………..79 F、SHR及SD大鼠暴露51nm ufCB 500µg比較………………..…………….79 G、SHR及SD大鼠暴露95nm ufCB 1000µg比較……………………………..80 H、SHR及SD大鼠暴露95nm ufCB 500µg比較……………………..……….80 表二、SHR血清8-OHdG、周邊白血球DNA單股斷裂各參數指標及肺泡灌洗液中各發炎指標相關性比較………………………………………………………………81 表三、SD血清8-OHdG、周邊白血球DNA單股斷裂各參數指標及肺泡灌洗液中各發炎指標相關性比較…………………………………...…………………………….82 表四、微粒產品名稱及特性………………………………………………………………83 附錄一、DCF螢光分析法實驗步驟……………………………………………………..84 附錄二、動脈採血步驟……………………………………………………………………87 附錄三、肺泡灌洗步驟……………………………………………………………………88 附錄四、細胞計數、細胞分類及染色步驟………………………………………………89 附錄五、總蛋白質分析步驟………………………………………………………………90 附錄六、慧星分析法實驗步驟……………………………………………………………91 附錄七、慧星分析法彗星影像處理及分析………………………………………………92 附錄八、SHR及SD大鼠暴露ufCB實驗各粒徑及濃度使用動物數目………………94 附錄九、縮寫及中英文專有名詞對照表…………………………………………………95 | |
dc.language.iso | zh-TW | |
dc.title | 人造奈米碳黑微粒於非細胞系統及動物毒性研究 | zh_TW |
dc.title | Synthetic Ultrafine Carbon Black Toxicity in Cell Free
System and Animals | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂鋒洲(Fung-Jou Lu),吳焜裕(Kuen-Yuh Wu) | |
dc.subject.keyword | 奈米微粒,反應性氧化物種,發炎反應, | zh_TW |
dc.subject.keyword | nanoparticle,reactive oxygen species,inflammation, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-26 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
顯示於系所單位: | 職業醫學與工業衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。