請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35960
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 董成淵(Chen-Yuan Dong) | |
dc.contributor.author | Chang-Chun Lee | en |
dc.contributor.author | 李昌駿 | zh_TW |
dc.date.accessioned | 2021-06-13T07:48:48Z | - |
dc.date.available | 2006-07-28 | |
dc.date.copyright | 2005-07-28 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-26 | |
dc.identifier.citation | 參考資料
1. Zhu, C., G. Bao, and N. Wang, Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annual Review of Biomedical Engineering, 2000. 2: p. 189-226. 2. Guilak, F., et al., Cell mechanics. Journal of Biomechanics, 2000. 33(1): p. 1-2. 3. Toyoizumi, R. and S. Takeuchi, The Behavior of Chick Gastrula Mesodermal Cells under the Unidirectional Tractive Force Parallel to the Substrata. Journal of Cell Science, 1995. 108: p. 557-567. 4. Fass, J.N. and D.J. Odde, Tensile force-dependent neurite elicitation via anti-beta 1 integrin antibody-coated magnetic beads. Biophysical Journal, 2003. 85(1): p. 623-636. 5. Shieh, A.C. and K.A. Athanasiou, Principles of cell mechanics for cartilage tissue engineering. Annals of Biomedical Engineering, 2003. 31(1): p. 1-11. 6. Huang, H.D., R.D. Kamm, and R.T. Lee, Cell mechanics and mechanotransduction: pathways, probes, and physiology. American Journal of Physiology-Cell Physiology, 2004. 287(1): p. C1-C11. 7. Leckband, D., Measuring the forces that control protein interactions. Annual Review of Biophysics and Biomolecular Structure, 2000. 29: p. 1-26. 8. Crick, F.H.C. and A.F.W. Hughes, The Physical Properties of Cytoplasm - a Study by Means of the Magnetic Particle Method.1. Experimental. Experimental Cell Research, 1950. 1(1): p. 37-80. 9. Matthews, B.D., et al., Mechanical properties of individual focal adhesions probed with a magnetic microneedle. Biochemical and Biophysical Research Communications, 2004. 313(3): p. 758-764. 10. Neukirch, S., Extracting DNA twist rigidity from experimental supercoiling data. Physical Review Letters, 2004. 93(19): p. -. 11. Amblard, F., et al., A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Review of Scientific Instruments, 1996. 67(3): p. 818-827. 12. Strick, T.R., et al., The elasticity of a single supercoiled DNA molecule. Science, 1996. 271(5257): p. 1835-1837. 13. Bausch, A.R., W. Moller, and E. Sackmann, Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophysical Journal, 1999. 76(1): p. 573-579. 14. Huang, H., et al., Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation. Biophysical Journal, 2002. 82(4): p. 2211-2223. 15. Ashkin, A., Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 1970. 24(4): p. 156-&. 16. Ashkin, A., Applications of Laser-Radiation Pressure. Science, 1980. 210(4474): p. 1081-1088. 17. Ashkin, A., J.M. Dziedzic, and T. Yamane, Optical Trapping and Manipulation of Single Cells Using Infrared-Laser Beams. Nature, 1987. 330(6150): p. 769-771. 18. Neuman, K.C. and S.M. Block, Optical trapping. Review of Scientific Instruments, 2004. 75(9): p. 2787-2809. 19. Kuo, S.C. and M.P. Sheetz, Force of Single Kinesin Molecules Measured with Optical Tweezers. Science, 1993. 260(5105): p. 232-234. 20. Dai, J.W. and M.P. Sheetz, Mechanical-Properties of Neuronal Growth Cone Membranes Studied by Tether Formation with Laser Optical Tweezers. Biophysical Journal, 1995. 68(3): p. 988-996. 21. Sleep, J., et al., Elasticity of the red cell membrane and its relation to hemolytic disorders: An optical tweezers study. Biophysical Journal, 1999. 77(6): p. 3085-3095. 22. Prasad, P.N., Introduction To Biophotonics. 2003. 23. Binning, G., C.F. Quate, and C. Gerber, Atomic force microscope. Physical Review Letters, 1986. 56: p. 930-934. 24. Hansma, H.G. and J.H. Hoh, Biomolecular Imaging with the Atomic-Force Microscope. Annual Review of Biophysics and Biomolecular Structure, 1994. 23: p. 115-139. 25. A-Hassan, E., et al., Relative microelastic mapping of living cells by atomic force microscopy. Biophysical Journal, 1998. 74(3): p. 1564-1578. 26. Dammer, U., et al., Specific antigen/antibody interactions measured by force microscopy. Biophysical Journal, 1996. 70(5): p. 2437-2441. 27. Dong, C., et al., Passive Deformation Analysis of Human-Leukocytes. Journal of Biomechanical Engineering-Transactions of the Asme, 1988. 110(1): p. 27-36. 28. Hochmuth, R.M., Micropipette aspiration of living cells. Journal of Biomechanics, 2000. 33(1): p. 15-22. 29. Nambiar, R., B. Liesfeld, and J.C.D. Meiners, All-optical constant force scanning-line laser tweezers. Biophysical Journal, 2004. 86(1): p. 600A-600A. 30. Liu, Y., et al., Evidence for Localized Cell Heating Induced by Infrared Optical Tweezers. Biophysical Journal, 1995. 68(5): p. 2137-2144. 31. Jackson, J.D., Classical Electrodynamics, 3rd., Ch.5, p.184-189, 1999. 32. Griffiths, Introduction to Electrodynamics, Ch.6, p.255-259, 1999. 33. Faber, T.E., Fluid Dynamics for Physicists, Ch.6, p.227-231, 1995. 34. 七茂貿易股份有限公司, http://myweb.hinet.net/home12/up7-scomet/. 35. 宏惠光電股份有限公司, http://www.unice.com.tw/new/. 36. DYNAL Invitrogen Corporation, http://www.dynal.no/. 37. Sigma-Aldrich, http://www.sigmaaldrich.com/. 38. Universal Image Corporation, http://www.universal-imaging.com/products/metamorph/. 39. 惠汝生, 自動量測系統-LabVIEW. 2004. 40. National Instruments, LabVIEW User Manual. 2003. 41. 致茂電子股份有限公司, http://www.chroma.com.tw/. 42. Andor Technology, http://www.andor.com/. 43. Prior Scientific, http://www.prior.com/. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35960 | - |
dc.description.abstract | 電磁鑷子已經被証實是一個對生物細胞施以外力刺激的有效工具。經由改變電流及控制電磁鑷子針尖和細胞之間的距離,電磁鑷子對生物細胞施力的範圍可以數十個piconewton (pN)到數個nanonewton (nN)。然而,在使用電磁鑷子來對生物細胞施加定量外力的細胞力學研究之中,卻一直有著施力大小無法突破 數量級的限制。
在此篇論文之中,我們結合了自行設計的單磁極電磁鑷子與定力回饋系統於倒立式顯微鏡之上;透過圖形化程式LabVIEW來整合定力回饋系統中的數個硬體,包括電荷藕合元件 (charge-coupled device)、步進馬達移動平台 (motorized stage)及直流電源供應器 (DC power supply),因而能夠施加數十個 到數個 的定量外力在一生物細胞之上。未來則希望能夠將此電磁鑷子系統與螢光顯微術 (fluorescence microscopy)相結合,以用來觀測並研究生物細胞受到力學刺激之後的反應與機制。 | zh_TW |
dc.description.abstract | Electromagnetic tweezers have been demonstrated to be an effective tool in exerting mechanical stimulus in biological cells. By varying the currents applied to the electromagnetic poles and the distance between the tip and cells, force from the piconewton (pN) to nanonewton (nN) can be generated. However, among the cell-mechanical researches which used electromagnetic tweezers to applied constant stimulus to affect cells, the force generated to the cells is restricted to the order of nN.
In this thesis, we combine a single-pole electromagnetic tweezers with a constant-force feedback system on an inverted microscope. By using the graphical programming, LabVIEW, several hardware were integrated in the constant-force feedback system including the charge-coupled device、the motorized stage and the DC power supply, the pN to nN constant force can be applied to a single cell. In the future, we hope to combine this electromagnetic tweezers system with fluorescence microscopy to study the response and mechanism of the cells after affecting by mechanical stimulus. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:48:48Z (GMT). No. of bitstreams: 1 ntu-94-R92222023-1.pdf: 1194737 bytes, checksum: 36f40e13cc73f4f25d7ebe59ece4dbd7 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄
頁次 英文摘要…………………………………………………………...Ⅱ 中文摘要..................................................................................Ⅲ 目 錄…………………………………………………………...Ⅳ 圖表目錄…………………………………………………………...Ⅶ 誌 謝…………………………………………………………...Ⅹ 第一章 緒言 1.1 研究動機及目標.........................................................1 1.2 細胞力學的研究技術..................................................4 1.2.1 細胞力學的研究技術之簡介.....................................4 1.2.2 電磁鑷子 (electromagnetic tweezers)........................5 1.2.3 光鑷子 (optical tweezers)……………………………9 1.2.4 原子力顯微鏡 (atomic force microscopy)………..… 11 1.2.5 微量吸管 (micropipette aspiration)…………………13 1.3 電磁鑷子與其他技術之比較………………………….14 1.4 研究架構……………………………………………….17 第二章 實驗原理……………………………………………18 2.1 電磁鑷子的基本原理………………………………….18 2.2 力的校正的基本原理………………………………….22 第三章 實驗架設及方法…………………………………..27 3.1 電磁鑷子系統的架設………………………………….27 3.1.1 電磁鑷子系統之簡介……………………………….27 3.1.2 電磁鑷子…………………………………………...28 3.1.3 三軸移動平台………………………………………31 3.1.4 顯微鏡及保溫系統………………………………….32 3.2 力的校正方法………………………………………….33 3.3 定力回饋系統之整合………………………………….35 3.3.1 定力回饋系統之簡介……………………………….35 3.3.2 圖形化程式LabVIEW介紹…………..………………38 3.3.3 硬體介紹與整合……………………………………41 3.3.4 整合介面之介紹……………………………………44 第四章 實驗結果與討論…………………………………..46 4.1 磁場飽和效應與熱效應之實驗結果與討論………….46 4.1.1 磁場飽和效應之結果與討論………………………...47 4.1.2 熱效應之結果與討論……………………………….49 4.2 力的校正結果與討論………………………………….51 4.2.1 力的校正結果………………………………………51 4.2.2 力的校正討論………………………………………55 4.3 定力回饋系統測之試結果與討論…………………….58 4.3.1 定力回饋系統之測試結果…………………………...58 4.3.2 定力回饋系統之討論……………………………….64 第五章 結論與未來展望…………………………………..66 5.1 結論…………………………………………………….66 5.2 未來展望………………………………………………..67 參考資料..................................................................................68 | |
dc.language.iso | zh-TW | |
dc.title | 細胞力學電磁鑷子結合定力回饋系統之設計 | zh_TW |
dc.title | The design of cell-mechanical electromagnetic tweezers with a constant-force feedback system | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曹培熙(Pei-Hsi Tsao),石明豐(Ming-Feng Shih) | |
dc.subject.keyword | 電磁鑷子,細胞力學,定力回饋系統, | zh_TW |
dc.subject.keyword | electromagnetic tweezers,cell mechanics,constant-force feedback system, | en |
dc.relation.page | 70 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-26 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。