Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35950Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李瑞庭 | |
| dc.contributor.author | Yung-Fu Tsai | en |
| dc.contributor.author | 蔡永富 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:48:39Z | - |
| dc.date.available | 2005-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | [1] A. M. Martinez, and R. Benavente, The AR face database, CVC Technical Report, No. 24, June 1998.
[2] Arthur Dempster, Nan Laird, and Donald Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B, Vol. 39, 1977, pp.1–38. [3] Bernd Heisele, Thomas Serre, Sam Prentice, and Tomaso Poggio, Hierarchical classification and feature reduction for fast face detection with support vector machines, Pattern Recognition, Vol. 36, 2003, pp. 2007-2017. [4] Cheng-Chin Chiang, Wen-Kai Tai, Mau-Tsuen Yang, Yi-Ting Huang, and Chi-Jaung Huang, A novel method for detecting lips, eyes and faces in real time, Real-time Imaging, Vol. 9, 2003, pp. 277-287. [5] Chengjun Liu, A Bayesian discriminating features method for face detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 6, June 2003. [6] DTU face database, http://www2.imm.dtu.dk/~aam/. [7] H. Schneiderman, T. Kanade, A statistical method for 3D object detection applied to faces and cars, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2000, pp. 746-751. [8] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York, 1981. [9] J. C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Journal of Cybernetics, Vol. 3, 1973, pp. 32-57. [10] J. Huang, S. R. Kumar, M. Mitra, W. Zhu, R. Zabih, Image indexing using color correlograms, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1997, pp. 762–768. [11] Jianxin Wu and Zhi-Hua Zhou, Efficient face candidate selector for face detection, Pattern Recognition, Vol. 36, 2003, pp. 1175-1186. [12] Lin-Lin Huang, Akinobu Shimizu, Yoshihoro Hagihara, and Hidefumi Kobatake, Gradient feature extraction for classification-based face detection, Pattern Recognition, Vol. 36, 2003, pp. 2501-2511. [13] Md. Al-Amin Bhuiyan, Vuthichai Ampornaramveth, Shin-yo Muto, and Haruki Ueno, Face detection and facial feature localization for human-machine interface, NII Journal, No. 5, March 2003. [14] Ming-Hsuan Yang, David J. Kriegman, and Narendra Ahuja, Detecting faces in images: a survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1, January 2002, pp. 34-58. [15] V. Vapnik, A. Lerner, Pattern recognition using generalized portrait method, Automation and Remote Control, 1963. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35950 | - |
| dc.description.abstract | 在影像中偵測人臉的困難度來自於人臉的pose、臉部表情、人臉是否被遮蔽、以及光源的情況。我們提出了一個方法從靜態影像中偵測各種pose的人臉。我們提出的方法包含三個步驟。第一個步驟,使用膚色模型偵測出膚色的像素,再用相鄰元素分析找出膚色區域的位置。第二個步驟,先把膚色區域轉換成灰階影像,使用邊緣偵測演算法找出膚色區域的線條,並計算出膚色區域的特徵向量。我們提出的特徵向量包含兩個部份。第一個部分,將完成邊緣偵測的影像切割成3*4的格子,計算每個格子的水平線及垂直線的個數。第二個部份,計算邊緣影像的顏色相關直方圖的總和。第三個步驟,萃取一組訓練資料的特徵向量,並且用模糊群集法找出屬於人臉的群集。如果膚色區域的特徵向量與人臉群集的距離小於門檻值,該區域則判斷為人臉。實驗結果顯示出,我們的方法可以處理pose、旋轉、大小等變異。 | zh_TW |
| dc.description.abstract | The challenges for face detection from images come from the variation of poses, facial expressions, occlusions, lighting conditions, and so on. We propose a method for multiple-pose face detection from still images. Our proposed method consists of three phases. First, skin pixels are extracted using a skin color model. Connected component analysis is performed to find the skin regions. Second, before extracting the feature vector of a skin region, we apply edge detection to the region. Our feature vector consists of two parts. The first part is obtained by dividing the edge image into 3*4 grids and calculating the number of horizontal edges and the number of vertical edges in each grid. The other part is obtained by computing the summary of color correlogram of the edge image. Third, with a set of training images, the fuzzy c-means (FCM) clustering algorithm is used to build face models. If the Euclidian distance between a feature vector and a face model does not exceed a predefined threshold, the region will be classified to a face. The experimental results show that our method can deal with the variation in poses, rotations, scales, and so on. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:48:39Z (GMT). No. of bitstreams: 1 ntu-94-R92725022-1.pdf: 837346 bytes, checksum: b8d51b98b76a146ea5befe63dbf659a7 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Table of Contents i
List of Figures ii List of Tables iii Chapter 1 Introduction 1 Chapter 2 Literature Survey 3 2.1 Knowledge-based methods 3 2.2 Feature invariant methods 4 2.3 Template matching methods 5 2.4 Appearance-based method 6 2.5 Discussion 11 Chapter 3 Fuzzy C-means Clustering 13 Chapter 4 Multiple-pose Face Detection 15 4.1 Skin pixel detection 15 4.2 Feature vector extraction 18 4.2.1 Image enhancement 19 4.2.2 Edge detection 20 4.2.3 Feature vector analysis 21 4.3 Building face models using FCM clustering 22 4.4 Classification 23 Chapter 5 Experiment and Performance Evaluation 24 5.1 Performance evaluation 25 5.2 Comparison with other systems 28 Chapter 6 Conclusion and Future Work 30 References 32 | |
| dc.language.iso | en | |
| dc.subject | 人臉偵測 | zh_TW |
| dc.subject | 膚色偵測 | zh_TW |
| dc.subject | 模糊群集法 | zh_TW |
| dc.subject | face detection | en |
| dc.subject | fuzzy c-means clustering | en |
| dc.subject | skin color detection | en |
| dc.title | 以模糊群集法偵測人臉 | zh_TW |
| dc.title | Multiple-pose Face Detection Using Fuzzy C-means Clustering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 傅楸善,陳良華 | |
| dc.subject.keyword | 人臉偵測,模糊群集法,膚色偵測, | zh_TW |
| dc.subject.keyword | face detection,fuzzy c-means clustering,skin color detection, | en |
| dc.relation.page | 33 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-26 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| Appears in Collections: | 資訊管理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-94-1.pdf Restricted Access | 817.72 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
