Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35950
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李瑞庭
dc.contributor.authorYung-Fu Tsaien
dc.contributor.author蔡永富zh_TW
dc.date.accessioned2021-06-13T07:48:39Z-
dc.date.available2005-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-26
dc.identifier.citation[1] A. M. Martinez, and R. Benavente, The AR face database, CVC Technical Report, No. 24, June 1998.
[2] Arthur Dempster, Nan Laird, and Donald Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B, Vol. 39, 1977, pp.1–38.
[3] Bernd Heisele, Thomas Serre, Sam Prentice, and Tomaso Poggio, Hierarchical classification and feature reduction for fast face detection with support vector machines, Pattern Recognition, Vol. 36, 2003, pp. 2007-2017.
[4] Cheng-Chin Chiang, Wen-Kai Tai, Mau-Tsuen Yang, Yi-Ting Huang, and Chi-Jaung Huang, A novel method for detecting lips, eyes and faces in real time, Real-time Imaging, Vol. 9, 2003, pp. 277-287.
[5] Chengjun Liu, A Bayesian discriminating features method for face detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 6, June 2003.
[6] DTU face database, http://www2.imm.dtu.dk/~aam/.
[7] H. Schneiderman, T. Kanade, A statistical method for 3D object detection applied to faces and cars, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2000, pp. 746-751.
[8] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York, 1981.
[9] J. C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Journal of Cybernetics, Vol. 3, 1973, pp. 32-57.
[10] J. Huang, S. R. Kumar, M. Mitra, W. Zhu, R. Zabih, Image indexing using color correlograms, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1997, pp. 762–768.
[11] Jianxin Wu and Zhi-Hua Zhou, Efficient face candidate selector for face detection, Pattern Recognition, Vol. 36, 2003, pp. 1175-1186.
[12] Lin-Lin Huang, Akinobu Shimizu, Yoshihoro Hagihara, and Hidefumi Kobatake, Gradient feature extraction for classification-based face detection, Pattern Recognition, Vol. 36, 2003, pp. 2501-2511.
[13] Md. Al-Amin Bhuiyan, Vuthichai Ampornaramveth, Shin-yo Muto, and Haruki Ueno, Face detection and facial feature localization for human-machine interface, NII Journal, No. 5, March 2003.
[14] Ming-Hsuan Yang, David J. Kriegman, and Narendra Ahuja, Detecting faces in images: a survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1, January 2002, pp. 34-58.
[15] V. Vapnik, A. Lerner, Pattern recognition using generalized portrait method, Automation and Remote Control, 1963.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35950-
dc.description.abstract在影像中偵測人臉的困難度來自於人臉的pose、臉部表情、人臉是否被遮蔽、以及光源的情況。我們提出了一個方法從靜態影像中偵測各種pose的人臉。我們提出的方法包含三個步驟。第一個步驟,使用膚色模型偵測出膚色的像素,再用相鄰元素分析找出膚色區域的位置。第二個步驟,先把膚色區域轉換成灰階影像,使用邊緣偵測演算法找出膚色區域的線條,並計算出膚色區域的特徵向量。我們提出的特徵向量包含兩個部份。第一個部分,將完成邊緣偵測的影像切割成3*4的格子,計算每個格子的水平線及垂直線的個數。第二個部份,計算邊緣影像的顏色相關直方圖的總和。第三個步驟,萃取一組訓練資料的特徵向量,並且用模糊群集法找出屬於人臉的群集。如果膚色區域的特徵向量與人臉群集的距離小於門檻值,該區域則判斷為人臉。實驗結果顯示出,我們的方法可以處理pose、旋轉、大小等變異。zh_TW
dc.description.abstractThe challenges for face detection from images come from the variation of poses, facial expressions, occlusions, lighting conditions, and so on. We propose a method for multiple-pose face detection from still images. Our proposed method consists of three phases. First, skin pixels are extracted using a skin color model. Connected component analysis is performed to find the skin regions. Second, before extracting the feature vector of a skin region, we apply edge detection to the region. Our feature vector consists of two parts. The first part is obtained by dividing the edge image into 3*4 grids and calculating the number of horizontal edges and the number of vertical edges in each grid. The other part is obtained by computing the summary of color correlogram of the edge image. Third, with a set of training images, the fuzzy c-means (FCM) clustering algorithm is used to build face models. If the Euclidian distance between a feature vector and a face model does not exceed a predefined threshold, the region will be classified to a face. The experimental results show that our method can deal with the variation in poses, rotations, scales, and so on.en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:48:39Z (GMT). No. of bitstreams: 1
ntu-94-R92725022-1.pdf: 837346 bytes, checksum: b8d51b98b76a146ea5befe63dbf659a7 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents i
List of Figures ii
List of Tables iii
Chapter 1 Introduction 1
Chapter 2 Literature Survey 3
2.1 Knowledge-based methods 3
2.2 Feature invariant methods 4
2.3 Template matching methods 5
2.4 Appearance-based method 6
2.5 Discussion 11
Chapter 3 Fuzzy C-means Clustering 13
Chapter 4 Multiple-pose Face Detection 15
4.1 Skin pixel detection 15
4.2 Feature vector extraction 18
4.2.1 Image enhancement 19
4.2.2 Edge detection 20
4.2.3 Feature vector analysis 21
4.3 Building face models using FCM clustering 22
4.4 Classification 23
Chapter 5 Experiment and Performance Evaluation 24
5.1 Performance evaluation 25
5.2 Comparison with other systems 28
Chapter 6 Conclusion and Future Work 30
References 32
dc.language.isoen
dc.subject人臉偵測zh_TW
dc.subject膚色偵測zh_TW
dc.subject模糊群集法zh_TW
dc.subjectface detectionen
dc.subjectfuzzy c-means clusteringen
dc.subjectskin color detectionen
dc.title以模糊群集法偵測人臉zh_TW
dc.titleMultiple-pose Face Detection Using Fuzzy C-means Clusteringen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee傅楸善,陳良華
dc.subject.keyword人臉偵測,模糊群集法,膚色偵測,zh_TW
dc.subject.keywordface detection,fuzzy c-means clustering,skin color detection,en
dc.relation.page33
dc.rights.note有償授權
dc.date.accepted2005-07-26
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
817.72 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved