Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35943
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 呂東武(Tung-Wu Lu) | |
dc.contributor.author | Ta-Wei Wang | en |
dc.contributor.author | 王大維 | zh_TW |
dc.date.accessioned | 2021-06-13T07:48:33Z | - |
dc.date.available | 2015-07-25 | |
dc.date.copyright | 2005-07-30 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-26 | |
dc.identifier.citation | Abdel-Rahman, E. and Hefzy, M. S., 1993. A two-dimensional dynamic anatomical model of the human knee joint. Journal of Biomechanical Engineering. 115, 357-365.
An, K. N., Himeno, S., Tsumura, H., Kawai, T. and Chao, E. Y., 1990. Pressure distribution on articular surfaces: application to joint stability evaluation. Journal of Biomechanics. 23, 1013-1020. Andriacchi, T. P. and Alexander, E. J., 2000. Studies of human locomotion: past, present and future. Journal of Biomechanics. 33, 1217-1224. Andriacchi, T. P. and Birac, D., 1993. Functional testing in the anterior cruciate ligament-deficient knee. Clinical Orthopaedics & Related Research. 40-47. Ateshian, G. A., 1993. A B-spline least-squares surface-fitting method for articular surfaces of diarthrodial joints. Journal of Biomechanical Engineering. 115, 366-373. Beard, D. J., Soundarapandian, R. S., O'connor, J. J. and Dodd, C. A. F., 1996. Gait and electromyographyic analysis of anterior cruciate ligament deficient subjects. Gait & Posture 4, 83-88. Berchuck, M., Andriacchi, T. P., Bach, B. R. and Reider, B., 1990. Gait adaptations by patients who have a deficient anterior cruciate ligament. Journal of Bone & Joint Surgery - American Volume. 72, 871-877. Beynnon, B., Yu, J., Huston, D., Fleming, B., Johnson, R., Haugh, L. and Pope, M. H., 1996. A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis. Journal of Biomechanical Engineering. 118, 227-239. Biedert, R. M. and Zwick, E. B., 1998. Ligament-muscle reflex arc after anterior cruciate ligament reconstruction: electromyographic evaluation. Archives of Orthopaedic & Trauma Surgery. 118, 81-84. Blankevoort, L. and Huiskes, R., 1991. Ligament-bone interaction in a three-dimensional model of the knee. Journal of Biomechanical Engineering. 113, 263-269. Blankevoort, L. and Huiskes, R., 1996. Validation of a three-dimensional model of the knee. Journal of Biomechanics 29, 955-961. Blankevoort, L., Kuiper, J. H., Huiskes, R. and Grootenboer, H. J., 1991. Articular contact in a three-dimensional model of the knee. Journal of Biomechanics 24, 1019-1031. Bollen, S., 2000. Epidemiology of knee injuries: diagnosis and triage. British Journal of Sports Medicine. 34, 227-228. Chao, E. Y., Lynch, J. D. and Vanderploeg, M. J., 1993. Simulation and animation of musculoskeletal joint system. Journal of Biomechanical Engineering. 115, 562-568. Collins, J. J., 1995. The redundant nature of locomotor optimization laws. Journal of biomechanics 28, 251-267. Collins, J. J. and O'Connor, J. J., 1991. Muscle-ligament interactions at the knee during walking. Proceedings of the Institution of Mechanical Engineers. Part H - Journal of Engineering in Medicine. 205, 11-18. Crowninshield, R. D. and Brand, R. A., 1981. A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics. 14, 793-801. Fleming, B. C., Beynnon, B. D., Renstrom, P. A., Johnson, R. J., Nichols, C. E., Peura, G. D. and Uh, B. S., 1999. The strain behavior of the anterior cruciate ligament during stair climbing: an in vivo study. Arthroscopy. 15, 185-191. Fujie, H., Livesay, G. A., Fujita, M. and Woo, S. L., 1996. Forces and moments in six-DOF at the human knee joint: mathematical description for control. Journal of Biomechanics. 29, 1577-1585. Fujie, H., Mabuchi, K., Woo, S. L.-Y., Livesay, G. A., Arai, S. and Tsukamoto, Y., 1993. The use of robitics technology to study human joint kinematics: A new methodology. Journal of Biomechanical Engineering 115, 211-217. Gage, J. R., Deluca, P. A. and Renshaw, T., S., 1995. Gait analysis: Principles and applications. Journal of Bone and Joint Surgery 77-A, 1607-1623. Glitsch, U. and Baumann, W., 1997. The three-dimensional determination of internal loads in the lower extremity. Journal of Biomechanics. 30, 1123-1131. Hung, C.-F., 2003. Development of a 3D computer graphics-based biomechanical model of the human knee joint. Master Thesis, National Taiwan University Press, Taipei. Huss, R. A., Holstein, H. and O'Connor, J. J., 2000. A mathematical model of forces in the knee under isometric quadriceps contractions. Clinical Biomechanics 15, 112-122. Lewek, M., Rudolph, K., Axe, M. and Snyder-Mackler, L., 2002. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clinical Biomechanics. 17, 56-63. Li, G., Lopez, O. and Rubash, H., 2001. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. Journal of Biomechanical Engineering. 123, 341-346. Lu, T.-W., 1997. Geometric and mechanical modelling of the human locomotor system. PHD. Thesis, Oxford Press, Lu, T. W. and O'Connor, J. J., 1999. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of Biomechanics. 32, 129-134. Lu, T.-W., O'Connor, J. J., Taylor, S. J. and Walker, P. S., 1998. Validation of a lower limb model with in vivo femoral forces telemetered from two subjects. Journal of Biomechanics. 31, 63-69. Lu, T. W., Taylor, S. J., O'Connor, J. J. and Walker, P. S., 1997. Influence of muscle activity on the forces in the femur: an in vivo study. Journal of Biomechanics. 30, 1101-1106. Markolf, K. L., Burchfield, D. M., Shapiro, M. M., Cha, C. W., Finerman, G. A. and Slauterbeck, J. L., 1996. Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part II: forces in the graft compared with forces in the intact ligament. Journal of Bone & Joint Surgery - American Volume. 78, 1728-1734. Markolf, K. L., Slauterbeck, J. R., Armstrong, K. L., Shapiro, M. S. and Finerman, G. A., 1997. A biomechanical study of replacement of the posterior cruciate ligament with a graft. Part II: Forces in the graft compared with forces in the intact ligament. Journal of Bone & Joint Surgery - American Volume. 79, 381-386. Mommersteeg, T. J. A., Huiskes, R., Blankevoort, L., Kooloos, J. G. M., Kauer, J. M. G. and Maathuis, P. G. M., 1996. A global verification study of a quasi-static knee model with multi-bundle ligaments. Journal of Biomechanics 29, 1659-1664. Moore, K. L. and Dalley, A. F., 1999, Clinical oriented anatomy. Lipponcott Williams & Wilkins, Philadelphia. Patriarco, A. G., Mann, R. W., Simon, S. R. and Mansour, J. M., 1981. An evaluation of the approaches of optimization models in the prediction of muscle forces during human gait. Journal of Biomechanics. 14, 513-525. Ramsey, D. K., Lamontagne, M., Wretenberg, P. F., Valentin, A., Engstro:m, b. r. and Ne'meth, G., 2001. Assessment of functional knee bracing: An in vivo three-dimensional kinematic analysis of the anterior cruciate deficient knee. Clinical Biomechanics 16, 61-70. Roberts, C. S., Rash, G. S., Honaker, J. T., Wachowiak, M. P. and Shaw, J. C., 1999. A deficient anterior cruciate ligament does not lead to quadriceps avoidance gait. Gait & Posture. 10, 189-199. Rushfeldt, P. D., Mann, R. W. and Harris, W. H., 1981. Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum--I. Ultrasonic measurement of acetabular surfaces, sphericity and cartilage thickness. Journal of Biomechanics. 14, 253-260. Scherrer, P. K. and Hillberry, B. M., 1979. Piecewise mathematical representation of articular surfaces. Journal of Biomechanics. 12, 301-311. Shelburne, K. B. and Pandy, M. G., 1997. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. Journal of Biomechanics 30, 163-176. Shelburne, K. B., Pandy, M. G., Anderson, F. C. and Torry, M. R., 2004. Pattern of anterior cruciate ligament force in normal walking. Journal of Biomechanics 37, 797-805. Shelburne, K. B., Pandy, M. G. and Torry, M. R., 2004. Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait. Journal of Biomechanics 37, 313-319. Strasser, h., 1917, Lehrbuch der Muskel- und Gelenkmechanik. Springer, Berlin. Thambyah, A., Thiagarajan, P. and Goh, J. C., 2000. Biomechanical study on the effect of twisted human patellar tendon. Clinical Biomechanics. 15, 756-760. Tsai, T.-Y., 2004. Measurement of the kinematics of normal and ACL deficient knees using fluoroscopy with computer bone models. Master Thesis, National Taiwan University Press, Taipei. van Ruijven, L. J., Beek, M. and van Eijden, T. M., 1999. Fitting parametrized polynomials with scattered surface data. Journal of Biomechanics. 32, 715-720. Wang, J. H., Ryu, J., Han, J. S. and Rowen, B., 2000. A new method for the representation of articular surfaces using the influence surface theory of plates. Journal of Biomechanics. 33, 629-633. Wang, X. S. and Bai, R. P., 2003. A comparison and review for mathematical representing or fitting techniques to articulating surfaces at the human knee joint. Biomedical Engineering-Applications, Basis & communications 15, 249-253. Wilson, D. R., Feikes, J. D. and O'Connor, J. J., 1998. Ligaments and articular contact guide passive knee flexion. Journal of Biomechanics 31, 1127-1136. Wilson, D. R., Feikes, J. D., Zavatsky, A. B. and O'connor, J. J., 2000. The components of passive knee movement are coupled to flexion angle. Journal of Biomechanics 33, 465-473. Wilson, D. R. and O'Connor, J. J., 1997. A three-dimensional geometric model of the knee joint for the study of joint forces in gait. Gait and Posture 5, 108-115. Wismans, J., Veldpaus, F., Janssen, J., Huson, A. and Struben, P., 1980. A three-dimensional mathematical model of the knee-joint. Journal of Biomechanics 13, 677-685. Yamamoto, K., Hirokawa, S. and Kawada, T., 1998. Strain distribution in the ligament using photoelasticity. A direct application to the human ACL. Medical Engineering & Physics. 20, 161-168. Yanagawa, T., Shelburne, K., Serpas, F. and Pandy, M., 2002. Effect of hamstrings muscle action on stability of the ACL-deficient knee in isokinetic extension exercise. Clinical Biomechanics. 17, 705-712. Zavatsky, A. B. and O'Connor, J. J., 1992. A model of human ligaments in the sagittal plane. {Part 2}: Fibre recruitment under load. Proceedings of Institution of Mechanical Engineers Part H, Journal of Engineering of Medicine 206, 135-145. Zavatsky, A. B. and O'Connor, J. J., 1994. Three-dimensional geometrical models of human knee ligaments. Proceedings of Institution of Mechanical Engineers Part H, Journal of Engineering of Medicine 208, 229-240. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35943 | - |
dc.description.abstract | 韌帶、肌肉以及關節面間複雜的力學互動,決定了膝關節之活動度與穩定度。在膝關節之受力結構中,前十字韌帶為最容易受傷的組織之ㄧ。為了適應前十字韌帶損傷帶來的影響,患者可能會改變本身的步態型式。許多學者建立數學理論模型以研究膝關節之運動學以及力動學,但大部分為單一膝關節或膝關節以下模型,無法考慮髖關節位置對於膝關節肌肉之力量作用線方向產生的影響。本研究之目的為建立一個考慮各主要關節之三維電腦下肢模型,並以之研究行走時前十字韌帶損傷與重建患者膝關節內各受力結構之力學互動。
本研究整合一詳細的膝關節模型與一既存下肢模型。為了更準確預測動作中膝關節之肌肉、韌帶以及關節面間力量傳遞的情形,吾人發展一兩階段分析流程並與新的下肢模型完成整合。膝關節與周圍軟組織結構之運動幾何位置初始由假設韌帶不可伸長及剛性關節面的三維膝關節模型決定。藉由疊代改變關節位移分量以計算韌帶纖維與關節面受力,直到滿足平衡。 新的下肢模型已用以計算正常人、前十字韌帶損傷及前十字韌帶重建患者於步行時各受力結構之力學。結果顯示前十字韌帶損傷患者在步態站立期矢狀切面上之力矩皆為伸展力矩,此即所謂的「避免股四頭肌步態」。其於站立期前半期,腿後肌力量變大以補償前十字韌帶之功能。而前十字韌帶重建患者並沒有這種特殊的步態形式,但其股四頭肌力量與屈曲力矩均較正常人小。 未來希望能將本研究建立之下肢模型應用在其他功能性動作上,藉此模型發現臨床問題並突破目前膝關節研究之限制。 | zh_TW |
dc.description.abstract | The mobility and stability of the knee joint are controlled by a complex interaction between articular surfaces and surrounding connective tissues including ligaments and muscles. Among these force-bearing structures, ACL injuries happen most often. ACLD patients may change their types of gait to compensate for ACL injuries. Several mathematical models have been applied to study kinematics and kinetics of human knee joint. However, studies on the knee joint in the literature have been based on isolated knee joint models or below knee models. The influence of the hip joint position on the lines of action of the bi-articular knee muscles has been largely ignored. The purposes of the study are to develop a three-dimensional lower limb model considering all major joints and use it to study the mechanical interactions between force-bearing structures of the knee joint in ACLD patients during gait.
A detailed knee model was integrated into an existing locomotor system. A two-phase numerical procedure was developed and incorporated with the new lower limb model for better prediction of the forces transmitted in the muscles, ligaments and articular surfaces at the knee during gait. Kinematic geometry of the knee and its surrounding structures were determined initially by the three-dimensional knee model assuming inextensible ligaments and rigid articular surfaces. By iteratively changing the displacement components of the joint, the forces developed in the ligaments and contact surfaces were calculated until the equilibrium equations were satisfied. The detailed lower limb model was applied in normal, ACLD and ACLR subjects during level walking. We found the extension moment in stance phase in the ACLD subjects. It was so-called “quadriceps-avoidance gait”. In the first half of the stance phase, the hamstrings generated larger forces in the ACLD subjects, which was considered as a compensation of the ACL deficiency. This special type of gait was not found in the ACLR subjects. However, the quadriceps forces and the flexion moment in the ACLR subjects were smaller to those in the normal ones. The lower limb will be applied in different functional activities to investigate clinical problems and to overcome limitations of current knee joint studies in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:48:33Z (GMT). No. of bitstreams: 1 ntu-94-R92548006-1.pdf: 767797 bytes, checksum: 1d8432bcc66b7d13c3af0ac05cc24b89 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 目錄 iii 表目錄 iv 圖目錄 v 第壹章 緒論 1 第一節 研究背景 1 第二節 膝關節功能與解剖構造 3 第三節 文獻回顧 5 第四節 研究目的 16 第貳章 實驗材料及方法 18 第一節 受試者 18 第二節 實驗設備 18 第三節 實驗系統校正 20 第四節 臨床實驗流程 21 第五節 實驗資料處理與分析 22 第參章 三維下肢模型 26 第一節 下肢模型 26 第二節 三維膝關節電腦模型 33 第三節 三維膝關節電腦模型之改進 38 第四節 三維膝關節電腦模型之驗證 43 第五節 三維膝關節模型與下肢模型之整合 45 第肆章 正常人、前十字韌帶損傷及重建患者步態時力學分析 48 第一節 正常人步態時之力學結果 48 第二節 前十字韌帶損傷患者步態時之力學結果 52 第三節 前十字韌帶重建患者步態時之力學結果 56 第四節 正常人、前十字韌帶損傷與前十字韌帶重建患者之步態比較 60 第五節 討論 65 第伍章 總結 67 第一節 結論 67 第二節 未來方向 70 參考文獻 71 | |
dc.language.iso | zh-TW | |
dc.title | 三維下肢模擬及其於前十字韌帶損傷患者步態分析之應用 | zh_TW |
dc.title | Three-Dimensional Lower Limb Modeling and Application to Biomechanical Analysis of the Knee in ACL-Injured Patients During Gait | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳文斌(Weng-Pin Chen),楊世偉(Sai-Wei Yang),陳祥和(Hsiang-Ho Chen) | |
dc.subject.keyword | 下肢,膝關節,前十字韌帶損傷,電腦模型,動作分析,步態, | zh_TW |
dc.subject.keyword | Lower limb,Knee joint,ACLD,Computer model,Motion analysis,Gait, | en |
dc.relation.page | 76 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
Appears in Collections: | 醫學工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-94-1.pdf Restricted Access | 749.8 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.