請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35920完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾四恭 | |
| dc.contributor.author | Hua-Mao Liao | en |
| dc.contributor.author | 廖樺懋 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:48:14Z | - |
| dc.date.available | 2005-07-28 | |
| dc.date.copyright | 2005-07-28 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | 參考文獻
1. Schmalenberger, A., F. Schwieger and C. C. Tebbe. 2001. Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-base microbial community analyses and genetic profiling. Appl. Environ. Microbiol. 67(8): 3557-3563. 2. Shreir, L. L. 1976. Corrosin. Butterworth & Co LTD, London 3. Singley, J. E., B. A. Beaydet, P. H. Markey, D. W. DeBerry, J. R. Kidwell, and D. A. Malish. 1985. Corrosion prevention and comtrol in water treatment and supply system. Noyes Publications, NJ, USA. 4. Stahl, D. A., D. J. Lane, G. J. Olsen, and N. R. Pace. 1984. Analysis of hydrothermal vent-associated symbionts by ribosome RNA sequence. Science. 224: 409. 5. Stahl, D. A., D. J. Lane, G. J. Olsen, and N. R. Pace. 1985. Characterization of a Yellowstone hot spring microbial community by 5S ribosome RNA sequence. Appl. Environ. Microbiol. 49: 1379. 6. Stumm, W., and J. J. Morgan. 1981. Aquatic Chemistr., John Wiley & Sons, New York. 7. Teske, A., N. B. Ramsing, K. Habicht, M. Fukui, J. Kuver, B. B. Jorgensen, and Y. Cohen. 1998. Sulfate-reducing bacteria and their activities in cyanobacterial mats of solar lake (Sinai, Egypt). Appl. and Environmen. Microbiol. Aug: 2943-2951. 8. Alexander, M. 1977. Introduction to soil microbiology. John Wiley & Sons , New York. 9. Aller, L., T. W. Bennett, G. Hackett, R. J. Petty, J. H. Lehr, H. Sedoris, D. M. Nielson, and J. E. Denne. 1991. Handbook of suggested practices for the design and installation of ground-water monitoring wells, EPA160014-891034. 10. Angell, P., and K. Urbanic. 2000. Sulphate-reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys. Corrosion Science. 42: 897-912. 11. Borresen, A. L., E. Hovig, and A. Brogger. 1988. Detection of base mutations in genomic DNA using denaturing gradient gel electrophoresis (DGGE) followed by transfer and hybridization with gene-spesific probe. Mutat.Res. 202: 77-83. 12. Bruggemann, J., J. R. Stephen, Y. J. Chang, S. J. Macnaughton, G. A. Kowalchuk, E. Kline, and D. C White. 2000. Competitive PCR-DGGE analysis of bacterial mixtures an internal standard and an appraisal of template enumeration accuracy. J. Microbiol. Methods. 40: 111-123. 13. Canfield, D. E., and D. J. DeMarias. 1991. Aerobic sulfate reduction in microbial mats. Science. 251: 1471-1473. 14. Campbell, L. L., and J. R. Postgate. 1965. Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev. 29: 63-359. 15. Caumette, P. 1993. Ecology and physiology og phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia. 49: 473-481. 16. Dannenberg, S., M. Kroder, W. Dilling, and H. Cypionka. 1992. Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch. Microbiol. 158: 93-99. 17. Debra, J. L., H. L. Jenter, J. D. Coates, E. J. P. Phillips, T. M. Schmidt, and D. R. Lovley. 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. of Bacteriology. Apr: 2402-2408. 18. Detay, M. 1997. (Translated by Carpenter, M.N.S.). Water walls- implementation, maintenance, and restoration. John Wiley & Sons, New York. 19. Devereux, R., M. Delaney, F. Widdel, and D. A. Stahl. 1989. Natural relationships among sulfate-reducing eubacteria. EPA/600/J-89/424. J. Bacteriol. 171(12):6689-6695. 20. Devereux, R.,M. D. Kane, J. Winfrey, and D.A. Stahl. 1992. Genus- and group- specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria System. Appl. Microbiol. 15: 601-609. 21. Douglas, A. S. and D. M. West. 1972. Fundamentals of analytical chemistry, 3th. 22. Ercolini, D., G. Moschetti, G. Blaiotta, and S. Coppola. 2001. Behavior of variable V3 region from 16S rDNA of lactic acid bacteria in denaturing gradient gel electrophoresis. Current Microbiol. 42: 199-202. 23. Farquhar, G. B. 1993. A review of trends in MIC. Mater. Perform. 1: 53-55. 24. Fetter, C. W. 2001. Applied Hydrogeology, 4th ed. Prentice Hall, Upper Saddle River, NJ. 25. Ferris, M. J., G. Muuyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62(2): 340-346. 26. Fischer, S. G., and L. S. Lerman. 1979. Length-independent separation of DNA restriction fragments in two dimensional gel electrophoresis. Cell. 16: 191-200. 27. Fontana, M. G.. 1986. In Corrosion Engineering, 3rd ed. McGraw-Hill, New York, 28-31, 39-152. 28. Gaines, R. H. 1910. Bacterial activity as a corrosion influence in the soil. J.Eng. Ind. Chem. 2: 123-133. 29. Garrett, J. H. and H. K. Lewis. 1891. The action of water on lead. London. 30. Head, I. M., J. R. Saunders, and R. W. Pickup. 1998. Microbial evolution, diversity, and ecology: A decade of ribosome RNA analysis of uncultivates microoriganisms. Microbial Ecol. 35: 1-11. 31. Hector, F. Castro, Norris H. Williams, and Andrew Ogram. 2000. Phylogeny of sulfate-reducing bacteria. FEMS Microbiology Ecology. 31: 1-9. 32. Hernandez, G., V. Kucera, D. Thierry, A.Pedersen. 1994. Corrosion inhibition of steel by bacteria. Corrosion. 50: 603-608. 33. Heuer, H., M. Krsek, P. Baker, K. Smalla, and E. M. H. Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63(8): 3233-3241. 34. Innis, M. A., and D. H. Gelfand. 1990. Optimization of PCRs. In: PCR protocols: Aguide in methods and application. Edited by Inns M. A., Gelfand D. H., Sninsky J. J., and White T. J., Academic Press, INC. p.3-12. 35. Jones, D. A. 1996. Principles and prevention of corrosion. Prentice Hall, HJ, USA. 36. Kleikemper, J., M. H. Schroth, W. V. Sigler, M. Schmucki, S. M. Bernasconi, and J. Zeyer. 2002. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl. And Enviro. Microbiol. Apr. 1516-1523. 37. Langelier, W. F. 1936. Chemical equilbra in water treatment. J. AWWA. 38: 169. 38. Little, B. P. Wagner and F. Mansfeld. 1991. Microbiologically influnced corrosion of metals and alloys. Inter. Metals. Reviews. 36: 253-272. 39. Lovely, D. R. and D. J. P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 1472-1480. 40. Lovley, D. R., E. E. Roden, E. J. P. Phillips, and J. C. Woodward. 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar. Geol. 113: 41-53. 41. Lovley, D. R. 1995(a). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Ind. Microbiol. 14: 85-93. 42. Lovley, D. R. 1995(b). Microbial reduction of iron, manganese, and other metals. Adv. Agron. 54: 175-231. 43. Mullis, K., F. A. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction .Cold Spring Harbor Symp. Quant. Biol. 51: 263-273. 44. Mullis, K., and F. A. Faloona. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymoi. 155: 335-350. 45. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59(3): 695-700. 46. Muyzer, G., T. Brinkhoff, U. Nubel, C. Sontegoeds, H. Schofer, and C. Wawer. 1997. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology, p.1-27. In A. D. L. Akkermans, J. D. van Elsae, and F. J. de Bruijn (ed.), Molecular microbial ecology manual, 3rd ed. Kluwer Academic Publishers, Dordrecht, The Netherlands. 47. Neefs, J. M., Y. V. De Peer , L. Hendrik, and R. De Wachter. 1990. Compilation of small ribosome subunit RNA sequences. Nucleic Acids Res. 18: 2237-2242. 48. Odom, J. M. 1990. Industrial and environmental concerns with sulfate reducing bacteria. ASM News 56: 473-476. 49. Okabe, S., T. Itoh, H. Satoh, and Y. Watanabe. 1999. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wasterwater biofilms. Applied and Envirnmental Microbiology. Nov. 5107-5116. 50. Olsen, G. J., D. J. Lane, S. J. Giovannoni, N. R. Pace, and D. A. Stahl. 1987. Microbial ecology and evolution: a ribosome RNA approach. Annu. Rev. Microbiol. 40: 337. 51. Postgate, J. R., and L. L. Campbell. 1966. Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol. Rev. 30: 38-732. 52. Postgate, J. R. 1984. The sulfate-reducing bacteria, 2ed. Cambridge, University press. 53. Riesner, D., G. Steger, R. Zimmat, R. A. Owens, M. Wagenhofer, W. Hillen, S. Vollbach, and K. Henco. 1989. Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transition, sequence variations, and protein-nucleic acid interactions. Electrophoresis. 10: 377-389. 54. Rossum, J. R., and Merrill, D. T. 1983. An evaluation of the calcium carbonate saturation index. J. AWWA. 85: 95. 55. Ryzhar, J. W. 1944. A new index for determining amount of calcium carbonate scale formed by a water. J. AWWA. 36: 472. 56. Saiki, R. K., S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim. 1985. Enzymatic amplification of â-globin genomic sequences and restriction site analysis dignosis of sickly cell anemia. Science. 230: 1350-1354. 57. Sailki, R. K., D. H. Gelfand, S. Scharf, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239: 487-491. 58. Tillet, D. M., and A. S. Myerson. 1987. The removal of pyretic sulfur from coal employing Thiobacillus ferrooxidans in a packed column recator. Biotechnol. Bioeng. 29: 146-150. 59. Truman, S. L. 1972. Standard solution for redox potertial measurements. Analytic Chemistry. 44(6): 1038-1039. 60. von Wolzogen Kuhr C. A. H. and van der Vlugt I. S. 1934. Graphication of cast iron as an electrochemical process in anaerobic soils. Water. 18: 147-165. 61. Watanable, K., Y. Kodama, and S. Harayma. 2001. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Methods. 44: 253-262. 62. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 5: 221-271. 63. Xu, L C., H. P. Fang, and K. Y. Chan. 1999. Atomic force microscopy study of microbiologically influenced corrosion of mild steel. Journal of the Electrochemical Societ., 146: (12) 4455-4460. 64. 左景伊, 1985, 應力腐蝕破裂, 西安交通大學出版社, 陝西西安. 65. 何東恒, 1994, 溶解二價鐵及三價鐵測定方法之建立及其在自然水體之應用, 國立台灣大學海洋研究所碩士論文. 66. 柯賢文, 1995, 腐蝕及其防制, 全華科技出版社, 台北. 67. 張文亮, 1999, 台灣地區地下水井體維護與管理技術, 經濟部水資源局. 68. 張育傑, 2003, 觀測井腐蝕改善之評估與規劃, 經濟部水資源局. 69. 張晉峰, 1999, 曾文溪底泥中硫酸還原菌的分離鑑定及菌群分佈的探討, 碩士論文. 國立海洋大學海洋生物研究所, 基隆. 70. 黃明輝, 1984, 稻田土壤氧化還原電位之檢定及應用於水分管理之研究, 中回農業研究, 33(3): 265-275. 71. 劉富雄(編譯), 1999, 防蝕技術, 全華科技圖書股份有限公司. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35920 | - |
| dc.description.abstract | 本研究目的為藉由升高水井厭氧環境之ORP,分析水井在不同ORP環境中之水質、菌相及腐蝕程度之變化,以釐清不同ORP環境下對金屬腐蝕之影響。
根據水質分析結果顯示,升高ORP後,造成水質參數pH值之升高、硫化物之減少及硫酸鹽之增加,降低了水質的腐蝕度。且由總TOC利用率之上升及硫酸鹽還原消耗TOC率之下降,說明非SRB異營菌在高ORP的環境,取代SRB成為環境之優勢菌;加上硫酸鹽還原率(SRR)也隨之降低。證明ORP的升高造成SRB失去優勢。 由菌相分析結果顯示,低ORP環境,有利於SRB生長,以SRB為優勢菌群。高ORP環境,因曝氣所溶入之溶氧,造成非SRB之異營菌大量生長,使SRB對有機碳之利用,競爭不過異營菌,使得SRB失去優勢。 最後在腐蝕程度分析結果顯示,電化學方面,水質所測得之腐蝕電流,隨ORP之升高而降低,表示腐蝕程度之減少。但升高至-220(mV)以上時,出現硫氧化菌之生長,加上生物膜中尚存在少許之SRB,造成硫氧化菌之氧化腐蝕及SRB之厭氧脫硫腐蝕同時進行,使得碳鋼片腐蝕的更為嚴重。 本研究證實利用分生方法在厭氧腐蝕診斷,確實為一相當有利之工具,可順利觀察出不同條件下的菌相,包括不同ORP、不同金屬表面,甚至無法分離純化培養者。本研究亦成功建立不同ORP之菌種資料庫,可作為日後研發分子生物快速診斷方法之基礎。 | zh_TW |
| dc.description.abstract | The water quality parameters, microbial communities and water corrosion current were investigated in this study to evaluate the relationship between the corrosion behaviors and these factors on mild steel under various controlled oxidative reduction potential (ORP). While the ORP increased, the facultative heterotrophics, other than sulfate-reducing bacteria (SRB), are more predominant rather than SRB under facultative condition. The results of the increase of the total organic carbon (TOC) utilization rate and the decrease of the sulfate reducing rate (SRR) under facultative condition demonstrate that. Furthermore, the variations of microbial communities determined by PCR (polymerase chain reaction)/cloning method under various ORP conditions also demonstrated the SRB were no more the dominant group while the ORP in the reactor increased. Besides, both SRB and sulfur-oxidizing bacteria (SOB) were simultaneous exist on the surface of the testing mild steel coupons while the ORP was controlled to as high as -180 mV. The results from the electrochemical methods show that the corrosion currents were decreased as the ORP increased; however, the results from the weight loss methods show that the more corrosive weight loss was occurred on the higher ORP. It was suggested that the anode depolarization was accelerated by both the SRB and SOB on the surface of the mild steel.
The technology of the molecular biology was powerful diagnosis tool, which can reveal the microbial communities under various samples. A 16S rDNA library related to the anaerobic biocorrosion under different ORP was built in this study. That will be a good basis for further application on the development of the rapid diagnosis on the anaerobic boicorrosion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:48:14Z (GMT). No. of bitstreams: 1 ntu-94-R92541119-1.pdf: 14084903 bytes, checksum: 2768b214291b03f0aabf56a43e57fc1a (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目錄
摘要 ……………………………………………………………………I Abstract …………………………………….…………………………II 目錄 …………………………………………………………………...IV 表目錄 ……………………………………………………………....VIII 圖目錄………………………………………………………….………. X 第一章 前言 1 1.1 研究緣起 1 1.2 研究動機 2 1.3 研究內容 3 第二章 文獻回顧 4 2.1 電化學腐蝕 4 2.1.1 基本原理 4 2.1.2 腐蝕動力學 6 2.1.3腐蝕速率之量測 7 2.1.4 腐蝕形態 12 2.2 影響金屬腐蝕之環境因子 16 2.2.1 pH 值 16 2.2.2 溶氧 17 2.2.3 硫化物 18 2.2.4 水井腐蝕指標 20 2.3 生物性腐蝕 22 2.3.1 好氧性生物腐蝕 23 2.3.2 厭氧性生物腐蝕 25 2.3.3 硫酸塩還原菌 27 2.4 分子生物技術於菌相分析之應用 35 2.4.1 16S rDNA 36 2.4.2 DNA萃取 38 2.4.3 PCR 39 2.4.4基因選殖(cloning) 43 2.4.5 DGGE 46 2.4.6 定序及親緣樹的建立 48 2.4.7 其它技術之應用 48 第三章 實驗材料與方法 49 3.1 研究內容 49 3.2 連續式反應槽之污泥馴養 50 3.2.1 污泥來源 50 3.2.2 反應槽設計 50 3.2.3 反應槽之操作程序 52 3.2.4 試片之設置 53 3.2.5 不同氧化還原電位之連續流試驗 54 3.3 檢測分析方法 56 3.3.1 水質分析項目 56 3.3.2 生物相分析項目 58 3.3.3 腐蝕分析項目 68 第四章 結果與討論 71 4.1 反應槽之水質分析結果 71 4.1.1 不同 ORP下對pH值之影響 71 4.1.2 ORP升高對TOC之影響 74 4.1.3 ORP升高對硫酸鹽之影響 79 4.1.4 ORP升高對溶解性硫化物之影響 82 4.2反應槽之腐蝕分析結果 86 4.2.1 不同ORP下電化學腐蝕程度分析 86 4.2.2 不同ORP下浸泡之含鐵合金腐蝕程度分析 90 4.3 反應槽之生物菌相分析結果 109 4.3.1 未控制ORP環境下之菌相 109 4.3.2 ORP-250(mV)環境下之菌相 142 4.3.3 ORP-220(mV)環境下之菌相 155 4.3.4 ORP-180(mV)環境下之菌相 168 4.3.5 各不同ORP條件菌相綜合比較 181 第五章 結論與建議 186 5.1 結論 186 5.2 建議 188 參考文獻 189 附錄 197 | |
| dc.language.iso | zh-TW | |
| dc.subject | 硫酸鹽還原菌 | zh_TW |
| dc.subject | 分子生物技術 | zh_TW |
| dc.subject | 厭氧生物腐蝕 | zh_TW |
| dc.subject | anaerobic biocorrosion | en |
| dc.subject | The technology of the molecular biology | en |
| dc.subject | SRB | en |
| dc.title | 不同氧化還原電位厭氧生物腐蝕之特性分析 | zh_TW |
| dc.title | Analysis of Anaerobic Biocorrosion Characterization in Different Oxidative Reduction Potential | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李志源,張育傑,張志誠 | |
| dc.subject.keyword | 厭氧生物腐蝕,硫酸鹽還原菌,分子生物技術, | zh_TW |
| dc.subject.keyword | anaerobic biocorrosion,SRB,The technology of the molecular biology, | en |
| dc.relation.page | 208 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 13.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
