請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35900完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽明 | |
| dc.contributor.author | Fu-Che Wu | en |
| dc.contributor.author | 吳賦哲 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:48:00Z | - |
| dc.date.available | 2005-07-27 | |
| dc.date.copyright | 2005-07-27 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | Amenta, N., Choi, S., and Kolluri, R. 2001. The power crust. Proceedings of the sixth ACM Symposium on Solid Modeling and Applications, 249–260.
Attali, D., and Montanvert, A. 1996. Modeling noise for a better simplification of skeletons. Proceedings of International Conf. on Image Processing, 13–16. Biasotti, S., Falcidieno, B., and Spagnuolo, M. 2004. Surface shape understanding based on extended reeb graphs. Surface Topological Data Structures: An Introduction for Geographical Information Science, 87–103. Bitter, I., Kaufman, A. E., and Sato, M. 2001. Penalized-distance volumetric skeleton algorithm. IEEE Transaction on Visualization and Computer Graphics 7,3, 195–206. Blum, H. 1967. A Transformation for Extracting New Descriptors of Shape. MIT Press, 362–380. Borgefors, G., and Nystr¨om, I. 1997. Efficient shape representation by minimizing the set of centres of maximal discs / spheres. Pattern Recognition Letters 18 , 465–472. Borgefors, G., Nystr¨om, I., and di Baja, G. 1999. Computing skeletons in three dimensions. Pattern Recognition 32 , 1225–1236. Bradshaw, G., and O’Sullivan, C. 2004. Adaptive medial-axis approximation for sphere-tree construction. ACM Transactions on Graphics 23, 1, 1–26. Capell, S., Green, S., Curless, B., Duchamp, T., and Popovi´c, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM TOG 21, 3, 586–593. Choi, S. W., and Seidel, H. P. 2001. One-sided stability of medial axis transform.Lecture Notes in Computer Science 2191 , 132–139. Choi, H., Choi, S., and Moon, H. 1997. Mathematical theory of medial axis transform. Pacific Journal of Mathematics 181, 1, 57–87. Choi, W., Lam, K., and Siu, W. 2003. Extraction of the euclidean skeleton based on a connectivity criterion. PR, 3, 721–729. Chung, J. H., Tsai, C. H., and Ko, M. C. 2000. Skeletonization of threedimensional object using generalized potential field. IEEE Transaction on Pattern Analysis and Machine Intelligence 22, 11, 1241–1251. Culver, T., Keyser, J., and Manocha, D. 1999. Accurate computation of the medial axis of a polyhedron. Proceedings of the fifth ACM symposium on Solid Modeling and Applications, 179–190. Datta, B. N. 1995. Numerical Linear Algebra and Applications. Brooks/Cole,111–132. Datta, B. N. 1995. Numerical Linear Algebra and Applications. Brooks/Cole,551–599. Dinh, H. Q., and Turk, G. 2000. Reconstructing surfaces by volumetric regularization.GVU-00-26, College of Computing, Georgia Tech. Garland, M., and Heckbert, P. 1997. Surface simplification using quadric error metrics. ACM SIGGRAPH 1997 Conference Proceedings, 209–216. Giblin, P., and Kimia, B. 2000. A formal classification of 3d m.a. points and their local geometry. CVPR00 , 566–573. Goldstein, H. 1980. Classical Mechanics. Addison-Wesley, 164–166. Grigorishin, T., and Yang, Y. 1998. Skeletonization: An electrostatic fieldbased approach. Pattern Analysis and Applications 1 , 163–177. Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3d shapes. SIGGRAPH 2001 Conference Proceedings, 203–212. Hubbard, P. 1996. Approximating polyhedra with spheres for time-critical collision detection. ACM Transactions on Graphics 15, 3, 179–210. Kass, M., Witkin, A., and Terzopoulos, D. 1987. Snakes: Active contour models. International Journal of Computer Vision 1 , 321–331. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. SIGGRAPH 2003 Conference Proceedings, 954–961. Kho, Y., and Garland, M. 2005. Sketching mesh deformations. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, 147–154. Kimia, B. B. 2003. On the role of medial geometry in human vision. Journal of Physiology-Paris 97, 2-3, 155–190. Kovar, L., and Gleicher, M. 2004. Automated extraction and parameterization of motions in large data sets. ACM Transactions on Graphics 23, 3, 559–568.(SIGGRAPH 2004 Conference Proceedings). Kry, P. G., James, D. L., and Pai, D. K. 2002. Eigenskin: real time large deformation character skinning in hardware. In Proceedings of the 2002 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, 153–159. L. Wade, R. E. P. 2002. Automated generation of control skeletons for use in animation. The Visual Computer 18, 2, 97–110. Lazarus, F., and Verroust, A. 1999. Level set diagrams of polyhedral objects.In Proceedings of the 1999 ACM Symposium on Solid Modeling and Applications, 130–140. Levin, D. 2001. Mesh-independent surface interpolation. Geometric Modeling for Scientific Visualization, 37–49. Lewis, J., Cordner, M., and Fong, N. 2000. Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In ACM SIGGRAPH 2000 Conference Proceedings, 165–172. Leymarie, F., and Levine, M. 1992. Simulating the grassfire transform using an active contour model. IEEE Transaction on Pattern Analysis and Machine Intelligence 14, 1, 56–75. Leymarie, F. F., Kimia, B., Giblin, B., and Towards, P. J. 2004. Surface regularization via medial axis transitions. International Conference on Pattern Recognition, 123–126. Li, X., Woon, T. W., Tan, T. S., and Huang, Z. 2001. Decomposing polygon meshes for interactive applications. ACM Symp. on Interactive 3D Graphics, 35–42. Ma, W. C., Wu, F. C., and Ouhyoung, M. Skeleton extraction of 3d objects with radial basis function. Proceedings of Shape Modelling International 2003. Mangan, A. P., and Whitaker, R. T. 1999. Partitioning 3d surface meshes using watershed segmentation. IEEE Transactions on Visualization and Computer Graphics 5, 4, 308–321. Massey, W. 1989. Algebraic topology: An introduction. Springer Verlag, New York. Mayya, N., and Rajan, V. T. 1994. Voronoi diagrams of polygons: A framework for shape representation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 638–643. Meyer, M., Desbrun, M., Schroder, P., and Barr, A. 2003. Discrete differential-geometry operators for triangulated 2-manifolds. Visualization and Mathematics III , 35-57. M.Foskey, Lin, M., and D.Manocha. 2003. Efficient computation of a simplified medial axis. In Proceedings of ACM Symposium on Solid Modeling and Applications. Mohr, A., Tokheim, L., and Gleicher, M. 2003. Direct manipulation of interactive character skins. In Proceedings of the 2003 Symposium on Interactive 3D Graphics, 27–30. Mortara, M., and Patane, G. 2002. Affine-invariant skeleton of 3d shapes. Proceedings of Shape Modeling International 2002 , 245–278. Nilsson, F., and Danielsson, P.-E. 1997. Finding the minimal set of maximum disks for binary objects. Graphical Models and Image Processing 59, 1, 55–60. Ogniewicz, R., and Ilg, M. 1992. Voronoi skeletons: theory and applications. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 63–69. Ogniewicz, R. 1995. Automatic medial axis pruning by mapping characteristics of boundaries evolving under the euclidean geometric heat flow onto voronoi skeletons. Technical Report 95-4 . Palenichka, R. M., and Zaremba, M. B. 2002. Multi-scale model-based skeletonization of object shapes using self-organizing maps. Intl. Conference on Pattern Recognition, 10143–10147. Pizer, S. M., Thall, A. L., and Chen, D. T. 1994. M-reps: A new object representation for graphics. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 638–643. Savchenko, V. V., Pasko, A. A., Okunev, O. G., and Kunii, T. L. 1995. Function representation of solids reconstructed from scattered surface points and contours. Computer Graphics Forum 14, 4, 181–188. Sheehy, D. J., Armstrong, C. G., and Robinson, D. J. 1996. Shape description by medial axis construction. IEEE Transactions on Visualization and Computer Graphics 2, 1, 62–72. Sherbrooke, E. C., Patrikalakis, N. M., and Brisson, E. 1995. Computation of the medial axis transform of 3d polyhedra. Proceedings of the third ACM symposium on Solid Modeling and Applications, 187–199. Shinagawa, Y., and Kunii, T. 1991. Constructing a reeb graph automatically from cross sections. IEEE Computer Graphics and Applications, 44–51. Siddiqi, K., Shokoufandeh, A., Dickinson, S. J., and Zucker, S. W. 1998. Shock graphs and shape matching. ICCV , 222–229. Siddiqi, K., Bouix, S., Tannenbaum, A. R., and Zucker, S. W. 2002. Hamilton-jacobi skeletons. International Journal of Computer Vision 48, 3, 215–231. Sloan, P. J., Rose, C. F., and Cohen, M. F. 2001. Shape by example. In Proceedings of the 2001 Symposium on Interactive 3D Graphics, 135–143. Spanier, E. 1966. Algebraic topology. McGraw-Hill, New York. Tam, R., and Heidrich, W. 2002. Feature-preserving medial axis noise removal.ECCV2002, 672–686. Taubin, G. 1995. A signal processing approach to fair surface design. In ACM SIGGRAPH 1995 Conference Proceedings, 351–358. Turk, G., and O’Brien, J. F. Shape transformation using variational implicit surface. SIGGRAPH 1999 Conference Proceedings, 335–342. Turk, G., and O’Brien, J. F. May 2000. Variational implicit surfaces. GVU-99-15, College of Computing, Georgia Tech. Turk, G., Dinh, H. Q., O’Brien, J. F., and Yngve, G. 2001. Implicit surfaces that interpolate. Proceedings of the seventh International Conference on Shape Modeling and Applications, 62–71. Verroust, A., and Lazarus, F. 2000. Extracting skeletal curves from 3d scattered data. The Visual Computer 16, 1, 15–25. Witkin, A., and Kass, M. 1988. Spacetime constraints. In ACM SIGGRAPH 1998 Conference Proceedings, 159–168. Witkin, A., and Popovic, Z. 1995. Motion warping. In ACM SIGGRAPH 1995 Conference Proceedings, 105–108. Wolter, F. E. 1992. Cut locus and medial axis in global shape interrogation and representation. MIT Technical Report. Wu, F. C., Chen, B. Y., Liang, R. H., and Ouhyoung, M. 2004. Prong features detection of a 3d model based on the watershed algorithm. In ACM SIGGRAPH 2004 Conference Abstracts and Applications. Wyvill, G., and Handley, C. 2001. The thermodynamics of shape. Proceedings of Shape Modeling International 2001 , 2–8. Xiaohuan, C. W., and Cary, P. 2002. Multi-weight enveloping:least-squares approximation techniques for skin animation. SIGGRAPH 2002 Conference Proceedings,129–138. Zhou, Y., and Toga, A. 1999. Efficient skeletonization of volumetric objects.IEEE Transaction on Visualization and Computer Graphics 5, 3, 195–206. Zhu, S. C. 1999. Stochastic jump-diffusion process for computing medial axes in markov random fields. IEEE Trans on PAMI 21, 11, 1158–1169. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35900 | - |
| dc.description.abstract | Extracting skeleton from 3D objects is always an issue. Skeleton is not only a brief description of a 3D shape, it can also be used in many applications such as 3D object retrieval and articulated character animation. An ideal extraction method should be able to work on arbitrary shapes (concave, convex, or donut-like), be robust and efficient to compute, and above all, be able to generate visually satisfactory skeleton. We propose a novel approach based on Domain Connected Graph (DCG) to meet all the above criteria. Instead of using medial axis transform (MAT), our DCG based method automatically generates a set of significant points inside a 3D object which are domain points, and a skeleton is generated by connecting these domain points based on the topologic information of the boundary. To locate the domain points, a repulsion force model (1/rn , r =distance to boundary) is used to simulate the internal energy field contributed from the boundary shape. The constructed skeleton of DCG is a concise, stable and meaningful representation of a general 3D object, and can avoid the noise-sensitive problem encountered in MAT. Furthermore, there is no restriction on the types of 3D models, a problem often faced by the Radial Basis Function based approaches. Currently, the skeleton generated from a typical 3D model with 1000 to 10000 polygons takes less than 5 minutes on a Pentium IV
2.4 GHz PC. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:48:00Z (GMT). No. of bitstreams: 1 ntu-94-D85526003-1.pdf: 7872939 bytes, checksum: 9fd7708697f33c16561e20cc21b3bdd2 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Table of Contents v
Abstract vii 1 Introduction 1 1.1 Skeleton Related Application . . . . . . . . . . 1 1.2 Problem Analysis . . . . . . . . . . . . . . . . . 2 1.3 Proposed Solution . . . . . . . . . . . . . . . . .5 2 Previous Work 7 2.1 Medial Axis Transform Method . . . . . . . . . . . 8 2.2 Generalized Potential Field Method . . . . . . . . 9 2.3 Decomposition Based Method . . . . . . . . . . . . 12 3 Overview of DCG 14 3.1 Basic Concept .. . . . . . . . . . . . . . . . . . 14 3.2 General Procedure . . . . . . . . . . . . . . . . 18 3.3 Overview of Algorithm . . . . . . . . . . . . . . 19 4 Evaluation function 22 4.1 Surface Shrinking . .. . . . . . . . . . . . . . . 22 4.2 Radial Basis Function . .. . . . . . . . . . . . . 24 4.3 Repulsive Force Field . . . . . . . . . . . . . . 26 5 Radial Basis Function Based Approach 31 5.1 Skeletonization Algorithm . . . . . . . . . . . . 31 5.2 Property of Radial Basis Function . . . . . . . . 33 5.3 Results and Problems . . . . . . . . . . . . . . . 36 6 Initial Candidates 39 6.1 Voronoi Diagram . .. . . . . . . . . . . . . . . . 39 6.2 Domain Ball . .. . . . . . . . . . . . . . . . . . 40 7 Prong Feature Detection 44 7.1 Geodesic Distance . . . . . . . . . . . . . . . . 45 7.2 Watershed Algorithm . . .. . . . . . . . . . . . . 45 7.3 Refinement . . . . . . . . . . . . . . . . . . . . 50 8 Connection Construction 52 8.1 Joint Point Detection . . . . . . . . . . . . . . 52 8.2 Neighborhood Relationship . . . . . . .. . . . . . 53 8.3 Snake Algorithm . . . . . . . . . . . . . . . . . 57 9 Sketch Based Animation Editing 61 9.1 Motion Editing . . . . . . . . . . . . . . . . . . 61 9.2 Shape Deformation . . . . . .. . . . . . . . . . . 65 10 Results 73 10.1 Timing Analysis . . . . . . . . . . . . . . . . . 73 10.2 Complexity Analysis . . . . . . . . . . . . . . . 76 10.3 Future Work and Applications . . . . . . . . . . 77 11 Conclusion 88 Bibliography 90 | |
| dc.language.iso | en | |
| dc.subject | 中軸 | zh_TW |
| dc.subject | 骨幹 | zh_TW |
| dc.subject | 動畫 | zh_TW |
| dc.subject | 區域連接圖 | zh_TW |
| dc.subject | animation | en |
| dc.subject | DCG | en |
| dc.subject | skeleton | en |
| dc.subject | MAT | en |
| dc.title | DOMAIN CONNECTED GRAPH: THE ESSENTIAL
SKELETON OF A 3D SHAPE FOR ANIMATION | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳炳宇,莊永裕,莊榮宏,李同益,張鈞法,梁容輝 | |
| dc.subject.keyword | 骨幹,中軸,動畫,區域連接圖, | zh_TW |
| dc.subject.keyword | skeleton,MAT,animation,DCG, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 7.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
