Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35872
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群(Yi-Chun Wu)
dc.contributor.authorPei-Ken Hsuen
dc.contributor.author徐培根zh_TW
dc.date.accessioned2021-06-13T07:47:44Z-
dc.date.available2005-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-26
dc.identifier.citationAkakura, S., Singh, S., Spataro, M., Akakura, R., Kim, J.I., Albert, M.L., Birgem, R.B. (2004). The opsonin MFG-E8 is a ligand for the alphavbeta5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp. Cell Res. 292, 403-416.
Albert, M.L., Kim, J.L., Birge, R.B. (2000). alphavbeta5 integrin recruits the CrkII-DOCK180-rac1 complex for phagocytosis of apoptotic cells. Nat. Cell Biol. 2, 899-905.
Aravind, L., and Landsman, D. (1998). AT-Hook motifs identified in a wide variety of DNA-binding proteins. Nucleic. Acids Res 26, 4413-4421.
Bejsovec, A. (2005). Wnt pathway activation: new relations and localizations. Cell 120, 11-14.
Böse, J., Gruber, A.D., Helming, L., Schiebe, S., Wegener, I., Hafner, M., Beales, M., Köntgen, F., Lengeling, A. (2004). The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. J. Biol. 3, 15.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Brugnera, E., Haney, L., Grimsley, C., Lu, M., Walk, S.F., Tosello-Trampont, A.C., Macara, I.G., Madhani, H., Fink, G.R., Ravichandran, K.S. (2002). Unconventional Rac-GEF activity is mediated through the DOCK-180-ELMO complex. Nat. Cell Biol. 4, 574-582.
Burgess, A.W., Cho, H.S., Eigenbrot, C., Ferguson, K.M., Garrett, T.P.J., Leahy, D.J., Lemmon, M.A., Sliwkowski, M.X., Ward, C.W., Yokoyama, S. (2003). An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell 12, 541-552.
Burridge, K., and Wennerberg, K. (2004). Rho and Rac take center stage. Cell 116, 167-179.
Callahan M.K., Williamson, P., Schlegel, R.A., (2000). Surface expression of phosphatidylserine on macrophages is required for phagocytosis of apoptotic thymocytes. Cell Death Differ. 7, 645-653.
Camenisch, T.D., Koller, B.H., Earp, H.S., Matsushima, G.K. (1999). A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. J. Immunol. 162, 3498-503.
43
Cao, W.M., Murao, K., Imachi, H., Hirsmine, C., Abe, H., Yu, X., Dobashi, H., Wong, N.C.W., Takahara, J., Ishida, T. (2004). Phosphatidylserine receptor cooperates with high-density lipoprotein receptor in recognition of apoptotic cells by thymic nurse cells. J. Mol. Endocrinol 32, 497-505.
Chan, A., Seguin, R., Magnus, T., Papadimitriou, C., Toyka, K.V., Antel, J.P., Gold, R. (2003). Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: Termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia 43, 231-242.
Chen, F., Hersh, B.M., Conradt, B., Zhou, Z., Riemer, D., Gruenbaum, Y., Horvitz, H.R. (2000). Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 287, 1485-1489.
Cikala, M., Alexandrova, O., David, C.N., Pröschel, M., Stiening, B., Cramer, P., Böttger, A. (2004). The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe(II) dependent oxygenase activity. BMC Cell Biol. 5, 26.
Clissold, P.M., and Ponting, C.P. (2001). JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2beta. Trends Biochem. Sci. 26, 7-9.
Cohen, P.L., Caricchio, R., Abraham, V., Camenisch, T.D., Jennette, J.C., Roubey, R.A.S., Earp, H.S., Matsushima, G., Reap, E.A. (2002). Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196, 135-140.
Conradt, B. (2002). With a little help from your friends: cells don’t die alone. Nat. Cell Biol. 4, E139-143.
Côté, J.F., and Vuori, K. (2002). Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J. Cell Sci. 115, 4901-4913.
Cui, P., Qin, B., Liu, N., Pan, G., Pei, D. (2004). Nuclear localization of the phosphatidylserine receptor protein via multiple nuclear localization signals. Exp. Cell Res. 293, 154-163.
Daniel, N.N., and korsmeyer, S.J. (2004). Cell death: critical control points. Cell 116, 205-219.
44
deBakker, C.D., Haney, L.B., Kinchen, J.M., Grimsley, C., Lu, M., Klingele, D., Hsu, P.K., Chou, B.K., Cheng, L.C., Blangy, A., Sondek, J., Hengartner, M.O., Wu, Y.C., Ravichandran, K.S. (2004). Phagocytosis of apoptotic cells is regulated by a UNC-73/TRIO-MIG-2/RhoG signaling module and armadillo repeats of CED-12/ELMO. Curr. Biol 14, 2208-2216.
del Peso, L., Gonzalez, V.M., Inohara, N., Ellis, R.E., Nunez, G. (2000). Disruption of the CED-9-CED-4 complex by EGL-1 is a critical step for programmed cell death in Caenorhabditis elegans. J. Biol. Chem. 275, 27205-27211.
Dunwell, J.M., Culham, A., Carter, C.E., Sosa-Aguirre, C.R., Goodenough, P.W. (2001). Evolution of functional diversity in the cupin superfamily. Trends Biochem. Sci. 26, 740-746.
Ellis, H.M., and Horvitz, H.R. (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817-829.
Ellis, R.E., and Horvitz, H.R. (1991). Two C. elegans genes control the programmed cell deaths of specific cells in the pharynx. Development 112, 591-603.
Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L., Henson, P.M. (1992a). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207-2216.
Fadok, V.A., Savill, J.S., Haslett, C., Bratton, D.L., Doherty, D.E., Campbell, P.A., Henson, P.M. (1992b). Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J. Immunol. 149, 4029-4035.
Fadok, V.A., Bratton, D.L., Konowal, A., Freed, P.W., Westcott, J.Y., Henson, P.M. (1998). Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest. 101, 890-898.
Fadok, V.A., Bratton, D.L., Rose, D.M., Pearson, A., Ezekewitz, R.A., Henson, P.M. (2000). A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85-90.
Fadok, V.A., and Henson, P.M. (2001a). If phosphatidylserine is the death knell, a new phosphatidylserine-specific receptor is the bellringer. Cell Death Differ. 8, 582-587.
45
Fadok, V.A., de Cathelineau, A., Daleke, D.L., Henson, P.M., Bratton, D.L. (2001b). Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276, 1071-1077.
Fire, A., Xu, S., Montgomery, Kostas, S.A., Driver, S.E., Mello, C.C.. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
Fortini, M.E. (2002). γ-Secretase-mediated proteolysis in cell-surface-receptro signaling. Nat. Rev. Mol. Cell Biol. 3, 673-684.
Grimsley, C.M., Kinchen, J.M., Tosello-Trampont, A.C., Brugnera, E., Haney, L.B., Lu, M., Chen, Q., Schubert, D., Klingele, D., Hengartner, M.O., Ravichandran, K.S. (2003). DOCK180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J. Biol. Chem. 279, 6087-6097.
Grimsley, C., Ravichandran, K.S. (2003). Cues for the apoptotic cell engulfment: eat-me, don’t eat-me and come-get-me signals. Trends Cell Biol. 13, 648-656.
Gu., T., Orita, S., Han, M. (1998). Caenorhabditis elegans SUR-5, a novel but conserved protein, negatively regulates LET-60 Ras activity during vulva induction. Mol. Cell. Biol. 18, 4556-4564.
Gumienny, T.L., Brugnera, E., Tosello-Trampont, A.C., Kinchen, J.M., Haney, L.B., Nishiwaki, K., Walk, S.F., Nemergut, M.E., Macara, I.G., Francis, R., Schedl, T., Qin, Y., Aelst, L.A., Hengartner, M.O., Ravichandran, K.S. (2001). CED-12/ELMO, a novel member of the CrkII/DOCK180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27-41.
Gurnani, K., Kennedy, J., Sad, S., Sprott, D., Krishnan, L. (2004). Phosphatidylserine receptor-mediated recognition of archaeosome adjuvant promotes endocytosis and MHC Class I cross-presentation of the entrapped antigen by phagosome-to-cytosol transport and classical processing. J. Immunol. 173, 566-578.
Hanayama, R., Tanaka, M., Miyasaka, K., Aozasa, K., Koike, M., Uchiyama, Y., Nagata, S. (2004). Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147-1150.
46
Hamon, Y., Broccardo, C., Chambenoit, O., Luciani, M.F., Toti, F., Chaslin, S., Freyssinet, J.M., Devaux, P.F., McNeish, J., Marguet, D., Chimini, G. (2000). ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat. Cell Biol. 2, 399-406.
Henson, P.M., Bratton, D.L., Fadok, V.A. (2001). The phosphatidylserine receptor: a crucial molecular switch? Nat. Rev. Mol. Cell Biol. 2, 627-633.
Hisatomi, T., Sakamoto, T., Sonoda, K.H., Tsutsumi, C., Qiao, H., Enaida, H., Yamanaka, I., Kubota, T., Ishibashi, T., Kura, S., Susin, S.A., Kroemer, G. (2003). Clearance of apoptotic photoreceptors. Elimination of apoptotic debris into subretinal space and macrophage-mediated phagocytosis via phosphatidylserine receptor and integrin alphavbeta3. Am. J. Pathol. 162, 1869-1879.
Hoeppner, D.J., Hengartner, M.O., Schnabel, R. (2001). Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412, 202-206.
Hoffmann, P.R., deCathelineau, A.M., Ogden, C.A., Leverrier, Y., bratton, D.L., Daleke, D.L., Ridley, A.J., Fadok, V.A., Henson, P.M. (2001). Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J. Cell Biol. 155, 649-659.
Hoffmann, P.R., Kench, J.A., Vondracek, A., Kruk, E., Daleke, D.L., Jordan, M., Marrack, P., Henson, P.M., Fadok, V.A. (2005). Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J. Immunol. 174, 1393-1404.
Hong, J.R., Lin, G.H., Lin, C.J.F., Wang, W.P., Lee, C.C., Lin, T.L., Wu, J.L. (2004). Phosphatidylserine receptor is required for the engulfment of dead apoptotic cells and for normal embryonic development in zebrafish. Development 131, 5417-5427.
Horvitz, H.R. (2003). Worms, life, and death (Nobel lecture). Chembiochem. 4, 697-711.
Igarashi, K., Kaneda, M., Yamaji, A., Saido, T.C., Kikkawa, U., Ono, Y., Inoue, K., Umeda, M. (1995). A novel phosphatidylserine-binding peptide motif defined by an anti-idiotypic monoclonal antibody. Localization of phosphatidylserine-specific binding sites on protein kinase C and phosphatidylserine decarboxylase. J. Biol. Chem. 270, 29075-29078.
Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., Ahringer, J. (2000). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in
47
Caenorhabditis elegans. Genome Biol. 2, RESEARCH0002.
Katoh, H., and Negishi, M. (2003). RhoG activates Rac1 by direct interaction with the DOCK180-binding protein ELMO. Nature 424, 461-464.
Kaufmann S.H., and Hengartner, M.O. (2001). Programmed cell death: alive and well in the new millennium. Trends in Cell Biol 11, 526-534.
Kinchen, J.M., Cabello, J., Klingele, D., Wong, K., Feichtinger, R., Schnable, H., Schnable, R., Hengartner, M.O. (2005). Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature 434, 93-98.
Kishore, R.S., and Sundaram, M.V. (2002). ced-10 Rac and mig-2 function redundantly and act with unc-73 Trio to control the orientation of vulval cell divisions and migrations in Caenorhabditis elegans. Dev. Biol. 241, 339-348.
Kobayashi, S., Shira, T., Kiyokawa, E., Mochizuki, N., Matsuda, M., Fukui, Y. (2001). Membrane recruitment of DOCK180 by binding to PtdIns(3,4,5)P3. Biochem. J. 354, 73-78.
Kunisaki, Y., Masuko, S., Noda, M., Inayoshi, A., Sanui, T., Harada, M., Sasazuki, T., Fukui, Y. (2004). Defective fetal liver erythropoiesis and T-lymphopoiesis in mice lacking phosphatidylserine receptor. Blood 103, 3362-3364.
Lauber, K., Blumenthal, S.G., Waibel, W., Wesselborg. S. (2004). Clearance of Apoptotic cells: getting rid of the corpses. Mol. Cell 14, 277-287.
Lauber, K., Bohn, E., Kröber, S.M., Xiao, Y.J., Blumenthal, S.G., Lindemann, R.K., Marini, P., Wiedig, C., Zobywalski, A., Baksh, S., Xu. Y., Authenrieth, I.B., Schulze-Osthoff, K., Belka, C., Stuhler, G., Wesselborg, S. (2003). Apoptotic cells induce migration of phagocytes via capase-3-mediated release of a lipid attraction signal. Cell 113, 717-730.
Lemke, G., Lu, Q. (2003). Macrophage regulation by Tyro 3 family receptors. Curr. Opin. Immunol. 15, 31-36.
Li, M.O., Sarkisian, M.R., Mehal, W.Z., Rakic, P., Flavell, R.A. (2003). Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302, 1560-1563.
Lundquist, E.A., Reddien, P.W., Hartwieg, E., Horvitz, H.R., Bargmann, C.I. (2001). Three C.
48
elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128, 4475-4488.
Mahajan, N.P., Earp, H.S. (2003). An SH2 domain-dependent, phosphotyrosine-independent interaction between Vav1 and the Mer receptor tyrosine kinase. J. Biol. Chem. 278, 42596-42603.
Mangahas, P.M., Zhou, Z. (2005). Clearance of apoptotic cells in Caenorhabditis elegans. Seminars in Cell Dev. Biol. 16, 295-306.
Marguet, D., Luciani, M.F., Moynault, A., Williamson, P., Chimini, G. (1999). Engulfment of apoptotic cells involves the redistribution of membrane phosphatidylserine on phagocyte and prey. Nat. Cell Biol. 1, 454-456.
Mello, C.C., Kramer, J.M., Stinchcomb, D., Ambros, V. (1992). Efficient gene transfer in C. elegans: Extrachromosomal maintenance and integration of transforming sequence. EMBO J. 10, 3959-3970.
Nakano, T., Ishimoto, Y., Kishino, J., Umeda, M., Inoue, K., Nagata, K., Ohashi, K., Mizuno, K., and Arita, H. (1997). Cell adhesion to phosphatidylserine mediated by a product of growth arrest-specific gene 6. J. Biol. Chem. 272, 29411-29414.
Pear, S.W., and Aster, J.C. (2004). T cell acute lymphoblastic leukemia/lymphoma: a human cancer commonly associated with aberrant NOTCH1 signaling. Curr. Opin. Hematol. 11, 426-433.
Raftopoulou, M., and Hall, A. (2004). Cell migration: Rho GTPase lead the way. Dev. Biol. 265, 23-32.
Rathmell, J.C., and Thompson, C.B. (2002). Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 109, S97-S107.
Reddien, P.W., Cameron, S., Horvitz, H.R. (2001). Phagocytosis promotes programmed cell death in C. elegans. Nature 412, 198-202.
Reddien, P.W., Horvitz, H.R. (2004). The engulfment process of programmed cell death in Caenorhabditis elegans. Annu. Rev. Cell Dev. Biol. 20, 193-221.
49
Reif, K., and Cyster, J.G. (2002). The CDM protein DOCK2 in lymphocyte migration. Trends Cell Biol. 12, 368-373.
Rockwell, N.C., Krysan, D.J., Komiyama, T., Fuller, R.S. (2002). Precursor Processing by Kex2/Furin Proteases. Chem. Rev. 102, 4525-4548.
Rørth, P. (2002). Initiating and guiding migration: lessons from border cells. Trends Cell Biol. 12, 325-331.
Sanui, T., Inayoshi, A., Noda, M., Iwata, E., Stein, J.V., Sasazuki, T., Fukui, Y. (2003). DOCK2 regulates Rac activation and cytoskeletal reorganization through the interaction with ELMO1. Blood 102, 2948-2950.
Schlessinger, J. (2000). Cell Signaling by Receptor Tyrosine Kinases. Cell 103, 211-225.
Schneider, J.E., Böse, J., Bamforth, S.D., Gruber, A.D., Broadbent, C., Clarke, K., Neubauer, S., Lengeling, A., Bhattacharya, S. (2004). Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique. BMC Dev. Biol. 4, 16.
Scott, R.S., McMahon, E.J., Pop, S.M., Reap, E.A., Caricchio, R., Cohen, P.L., Earp, H.S., Matsushima, G.K. (2001). Phagocytosis and the clearance of apoptotic cells is mediated by MER. Nature 411, 207-211.
Sexton, D.W., Blaylock, M.G., Walsh, G.M. (2001). Human alveolar epithelial cells engulf apoptotic eosinophils by means of integrin- and phosphatidylserine receptor-dependent mechanisms: A process upregulated by dexamethasone. J. Allergy Clin. Immunol. 108, 962-969.
Somersan, S., Bhardwaj, N. (2001). Tethering and tickling: a new role for the phosphtidylserine receptor. J. Cell Biol. 155, 501-504.
Su, H.P., Nakada-Tsukui, K., Tosello-Trampont, A.C., Li, Y., Bu, G., Henson, P.M., Ravichandran, K.S. (2002). Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J. Biol. Chem. 277, 11772-11779.
Thomas, G. (2002). Furin at the cutting edge: from protein traffic to embryogenesis and
50
disease. Nat. Rev. Mol. Cell Biol. 3, 753-766.
Todt, J.C., Hu, B., Punturieri A., Sonstein, J., Polak, T., Curtis, J.L. (2001). Activation of Protein Kinase C βII by the stereo-specific phosphatidylserine receptor is required for phagocytosis of apoptotic thymocytes by resident murine tissue macrophages. J. Biol. Chem. 277, 35906-35914.
Todt, J.C., Hu, B., Curtis, J.L. (2004). The receptor tyrosine kinase MerTK activates phospholipase Cγ2 during recognition of apoptotic thymocytes by murine macrophages. J. Leukoc. Biol. 75, 705-713.
Vandivier R.W., Fadok, V.A., Hoffmann, P.R., Bratton, D.L., Penvari, C., Brown, K.K., Brain, J.D., Accurso, F.J., Henson, P.M. (2002). Elastase-mediated phophatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J. Clin. Invest. 109, 661-670.
Wang, X., Wu, Y.C., Fadok, V.A., Lee, M.C., Gengyo-Ando, K., Cheng, L.C., Ledwich, D., Hsu, P.K., Chen, J.Y., Chou, B.K., Henson, P., Mitani, S., Xue, D. (2003). Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science 302, 1563-1566.
Weitzman, J.B. (2004). The curious world of apoptotic cell clearance. J. Biol. 3, 13.
Wiegand, U.K., Corbach, S., Prescott, A.R., Savill, J., Spruce, B.A. (2001). The trigger to cell death determines the efficiency with which dying cells are cleared by neighbours. Cell Death Differ. 8, 734-746.
Williamson, P., Schlegel, R.A. (2004). Hide and seek: the secret identity of the phosphatidylserine receptor. J. Biol 3, 14.
Wood, W.B. et al., eds. (1988). The nematode – Caenorhabditis elegans. Cold Spring Harbor Laboratory Press.
Wu, Y.C., Horvitz, H.R. (1998). The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABS transporters. Cell 93, 951-960.
Wu, Y.C., Cheng, T.W., Lee, M.C., Weng N.Y. (2002). Distinct Rac activation pathways control Caenorhabditis elegans cell migration and axon outgrowth. Dev. Biol. 250, 145-155.
51
Wu, Y., Singh, S., Georgescu, M.M., Birge, R.B. (2005). A role for Mer tyrosine kinase in αvβ5 integrin-mediated phagocytosis of apoptotic cells. J. Cell Sci. 118, 539-553.
Yamaryo, T., Oishi, K., Yoshimine, H., Tsuchihashi, Y., Matsushima, K., Nagatake, T. (2003). Fourteen-member macrolides promote the phospatidylserine receptor-dependent phagocytosis of apoptotic neutrophils by alveolar macrophages. Antimicrob. Agents Chemother. 47, 48-53.
Yochem, J., Gu, T., Han, M. (1998). A new marker for mosaic analysis in Caenorhabditis elegans indicates a fusion between hyp6 and hyp7, two major components of the hypodermis.
Genetics 149, 1323-1334.
Yuan, J., and Yankner, B.A. (2000). Apoptosis in the nervous system. Nature 407, 802-809.
Zhou, Z., Hartwieg, E., Horvitz, H.R. (2001). CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43-56.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35872-
dc.description.abstract在多細胞生物中,正確的清除細胞自伐所造成的死亡細胞對於個體的生存十分重要。在線蟲死亡細胞的清除過程中,PSR-1被認為是作用在CED-2、CED-5、CED-10及CED-12上游的受器,調控這個過程。我們證實PSR-1會直接與CED-5及CED-12有直接的交互作用(Wang et al., 2003),並且找出PSR-1中參與作用的區域。PSR-1中另外可能有2個NLS,所以我們產生α-GST-PSR-1-IN的多株抗體,希望能分析PSR-1在細胞內的分佈。但是沒有抗體可以辨識線蟲lysate中自源性或是過量表現的PSR-1蛋白質。我們同時也在psr-1突變種的線蟲中表現不同片段的PSR-1蛋白質(dNLS1, dNLS-2, dNLS1&2, dTM),發現只有PSR-1-dTM不能復原psr-1突變所造成的細胞死亡清除的缺失。因此PSR-1是作用在細胞膜上來促進死亡細胞的吞噬,並且可能是扮演受器的角色。
為了了解psr-1和其他參與吞噬作用的基因之間的關係,我們觀察雙重或三重突變種中的細胞屍體數目。我們也發現了psr-1及mer-1可能共同作用在吞噬的路徑並且兩者間無直接的交互作用。另外,我們發現unc-73及mig-2可能共同作用在一個psr-1沒有參與的吞噬路徑。根據我們的實驗,我們推測PSR-1是可能扮演吞噬受器的角色來調控細胞屍體的吞噬,並且可能經由與MER-1共同作用來達成。
zh_TW
dc.description.abstractIn multicellular organisms, the proper removal of apoptotic cell corpses prevents the possible dispersal of harmful cellular contents from dying cells. In C. elegans, PSR-1 is proposed to function as a receptor and act upstream of the pathway mediated by CED-2, CED-5, CED-10, and CED-12, possibly through physical interaction with CED-5 and CED-12 to control the engulfment process (Wang et al., 2003). We further mapped the binding region in PSR-1 for CED-5 and CED-12 interaction. To examine the expression pattern of PSR-1, we generated mouse and rabbit polyclonal antibodies against GST-PSR-1-IN fusion protein in order to test the subcellular localization of PSR-1. However, these antibodies and α-human PSR antibodies fail to recognize either bacterially-expressed GST-PSR-1-IN or endogenous or overexpressed PSR-1 in worm lysates. In addition to a transmembrane domain (TM), PSR-1 is predicted to possess two nuclear localization signals (NLSs). To test if any of these motifs is important for PSR-1 function, we performed deletion assays. We found that TM but not NLS is important for the engulfment function of PSR-1. These results support the previous hypothesis that PSR-1 functions on the cell membrane and possibly as a receptor to promote cell corpses uptake.
In order to investigate the relationship between psr-1 and other possible engulfment genes, mer-1, unc-73, and mig-2, we analyzed the numbers of corpse in double and triple mutants. We showed that psr-1 and another engulfment receptor, mer-1, act in the same genetic pathway, and that there is no direct interaction between PSR-1 and MER-1 intracellular or extracellular domains. Besides, unc-73 and mig-2 may play minor roles and act in the same genetic pathway which does not involve psr-1 to control cell-corpse engulfment.
Together our experiments suggested that PSR-1 may act as a membrane receptor to regulate cell-corpse engulfment and that it may function with MER-1 to achieve this process.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:47:44Z (GMT). No. of bitstreams: 1
ntu-94-R92B43009-1.pdf: 14991530 bytes, checksum: 6915996728f7da3b2aac0494fb730125 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents
Table of Contents………………………………………………………………….1
Abstract…………………………………………………………………………….4
中文摘要...........................................................................................................6
Introduction……………………………………………………………………..…7
Results……………………………………………………………………………21
PSR-1 Is a Highly Conserved Novel Protein………………………………..21
PSR-1 Interacts with CED-5 and CED-12 via Its Intracellular C-terminal Regions………………………………………………………………………….22
PSR-1 Likely Function on Cell Membrane to Promote Cell-Corpse Engulfment……………………………………………………………………...24
PSR-1-GFP and GFP-PSR-1 Localization in Cell Nuclei and Deletion of the 2nd NLS Compromised the Nuclear Localization……................................26
psr-1 and mer-1 Possibly Act in the Same Genetic Pathway to Control Cell-Corpse Engulfment……………………………………………………….27
PSR-1 and MER-1 do not Interact through Their Intracellular Domains or Extracellular Domains………………………………………………………….28
unc-73 and mig-2 Possibly Act in the Same Genetic Pathway to Regulate Cell-Corpse Clearance………………………………………………………...29
psr-1 Likely Functions in Parallel with unc-73 and mig-2 to Control Cell-Corpse Engulfment……………………………………………………….30
Polyclonal α-PSR-1-IN or α-Human PSR Antibodies Failed to Recognize either Bacterial Expressed PSR-1-IN or Endogenous PSR-1 in Worm Lysates…………………………………………………………………………..31
2
Discussion………………………………………………………………………..32
PSR Promotes the Clearance of Apoptotic Cell Corpses………………….32
PSR-PS Ligation may be a Simple Tethering Mechanism…………………33
PSR Has Vital Functions in Fundamental Developmental Processes……34
The Subcellular Localization of PSR…………………………………………35
Cell-Corpse Engulfment Signaling Involving PSR-1, MER-1, UNC-73, and MIG-2……………………………………………………………………………37
Materials and Methods………………………………………………………….39
Strains and Genetics…………………………………………………………..39
Yeast-Two-Hybrid Assay………………………………………………………39
GST Pull-Down Assay (in vitro Binding Assay)……………………………...40
Antibodies and Western Blotting……………………………………………...41
References……………………………………….………………………………..42
Figures……………………………………………………………………………52
Figure 1 Molecules and Signaling Pathways Involved in Cell Corpse Engulfment in C. elegans and Their Mammalian Homologues……………52
Figure 2 Structural Features of PSR-1 and homologues in other species…………………………………………………………………………..53
Figure 3 The Intracellular Domain of PSR-1 Interacts with CED-5 and CED-12 in Yeast Two-Hybrid Assay………………………………………….54
Figure 4 Interaction of Various PSR-1 Intracellular Fragments with CED-5A …………………………………………………………………………55
Figure 5 Interaction of Various PSR-1 Intracellular Fragments with CED-5B………………………………………………………………………….56
Figure 6 Interaction of Various PSR-1 Intracellular Fragments with CED-12………………………………………………………………………….57
Figure 7 Relative Binding Abilities of PSR-1 Intracellular Fragments and human PSR to CED-5A, CED-5B and CED-12……………………………..58
Figure 8 Rescue of Cell-Corpse Engulfment Defect of the psr-1 Mutant by
3
Expressing PSR-1, PSR-1-dNLS1, PSR-1-dNLS2, and PSR-1- dNLS1&2, but not PSR-1-dTM Protein …………………………………………………..59
Figure 9 PSR-1-GFP Expression Patterns in 1.5-fold Embryos…………61
Figure 10 PSR-1-GFP Expression Patterns in 2-fold Embryos………….62
Figure 11 PSR-1-GFP Expression Patterns in Larva……………………..63
Figure 12 GFP-PSR-1 Expression Patterns in 1.5-fold Embryos……….64
Figure 13 GFP-PSR-1 Expression Patterns in 2-fold Embryos………….65
Figure 14 GFP-PSR-1 Expression Patterns in Larva…………………….66
Figure 15 psr-1 and mer-1 Possibly Act in the Same Genetic Pathway to Control Cell-Corpse Engulfment……………………………………………...67
Figure 16 The Intracellular domain of PSR-1 and MER-1 Fail to Self-Interact or Interact with Each Other in Yeast Two-Hybrid Assay……..68
Figure 17 The Extracellular domain of MER-1 Self-Interacts but Fails to Interact with the Extracellular domain of PSR-1 in Yeast Two-Hybrid Assay……………………………………………………………………………69
Figure 18 unc-73 and mig-2 may Play Minor Roles in Cell-Corpse Engulfment and Act in the Same Genetic Pathway…………………………70
Figure 19 unc-73 Enhances Cell Corpses in psr-1 Mutant Embryos at the Comma Stage…………………………………………………………………..71
Figure 20 mig-2 does not Enhance Cell Corpses in psr-1 Mutant………72
Figure 21 unc-73; mig-2 Enhances Cell Corpses in psr-1 Mutant Embryos at the Comma Stage…………………………………………………………...73
Figure 22 Western Blotting of GST-fused PSR-1 Proteins by Polyclonal Mouse and Rabbit α-PSR-1 Antibodies……………………………………...74
Figure 23 Western Blotting of GST-fused PSR-1 Proteins by α-Human PSR Antibodies…………………………………………………………………75
Figure 24 Polyclonal Mouse α-PSR-1 Antibodies Fail to Recognize Endogenous or Overexpress PSR-1 Protein in Worm Lysates……………76
Figure 25 PSR-1 and MER-1, Two Possible Cell-Corpse Receptors, may Cooperate to Promote the Clearance of Apoptotic Cell Corpse in Worm...77
dc.language.isoen
dc.subject吞噬zh_TW
dc.subject線蟲zh_TW
dc.subject細胞屍體zh_TW
dc.subjectengulfmenten
dc.subjectpsren
dc.subjectcell-corpseen
dc.title分子與遺傳分析線蟲psr-1在細胞屍體吞噬過程中的角色zh_TW
dc.titleMolecular and Genetic Analysis of C. elegans psr-1 in the Cell-Corpse Engulfment Processen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孟子青(Tzu-Ching Meng),黃偉邦(Wei-Pang Huang)
dc.subject.keyword線蟲,細胞屍體,吞噬,zh_TW
dc.subject.keywordpsr,cell-corpse,engulfment,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2005-07-26
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
14.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved