請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35858
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 貝蘇章 | |
dc.contributor.author | Huei-Shan Lin | en |
dc.contributor.author | 林慧珊 | zh_TW |
dc.date.accessioned | 2021-06-13T07:47:37Z | - |
dc.date.available | 2005-07-28 | |
dc.date.copyright | 2005-07-28 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-26 | |
dc.identifier.citation | [1] Yajun Li, “New expressions for flat-topped light beams,” Optics Communications, Vol. 206, pp. 225-234, June 2002.
[2] Yajun Li, “Light beams with flat-topped profiles,” Optics Letters, Vol. 27, No. 12, pp. 1007-1009, June 2002. [3] M. Shen and S. Wang, “Decentered elliptical flattened Gaussian beam,” Optics Communications, Vol. 240, pp. 245-252, 2004. [4] O. Herrmann, “On the approximation problem in nonrecursive digital filter design,”, IEEE Transactions on Circuit Theory, May 1971. [5] S. Samadi, M. O. Ahmad, and M. N. S. Swamy, “Results on maximally flat fractional-delay systems,” IEEE Transactions on Circuits and Systems—I: Regular Papers, Vol. 51, No. 11, Nov. 2004. [6] J.-P. Thiran, “Recursive digital filters with maximally flat group delay,” IEEE Transactions on Circuit Theory, Vol. 18, No. 6, Nov. 1971. [7] A. Fernandez-Vazquez and G. Jovanovic-Dolecek, “Design of maximally flat group delay filters,” IEEE International Symposium on Circuits and Systems, Vol. 2168, pp. 1-4, 2004. [8] E. Hermanowicz, “Explicit formulas for weighting coefficients of maximally flat tunable FIR delayers,” Electronics Letters, Vol. 28, No. 20, pp. 1936-1937, Sep. 1992. [9] William M. Wells, III, “Efficient synthesis of Gaussian filters by cascaded uniform filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 2, pp. 234-239, Mar. 1986. [10] O. Herrmann, “Design of nonrecursive digital filters with minimum phase,” Electronics Letters, Vol. 6, No. 11, pp. 329-330, May 1970. [11] J. S. Lim, “Spectral root homomorphic deconvolution system,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 27, No. 3, pp. 223-233, June 1979. [12] G. A. Mian and A. P. Nainer, “A fast procedure to design equiripple minimum-phase FIR filters,” IEEE Transactions on Circuits and Systems, Vol. 29, No. 5, pp. 327-331, May 1982. [13] T. Kobayashi and S. Imai, “Spectral analysis using generalized cepstrum,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 32, No. 5, pp. 1087-1089, Oct. 1984. [14] S-C Pei and S-T Lu, “Design of minimum-phase FIR digital filters by differential cepstrum,” IEEE Transactions on Circuits and Systems, Vol. 33, No. 5, pp. 570-576, May 1986. [15] T. Stathaki and A. G. Constantinides, “Root moments: an alternative interpretation of cepstra for signal feature extraction and modeling,” Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, Vol. 2, pp. 1477-1481, Oct. 1995 [16] T. Taxt, “Comparison of cepstrum-based methods for radial blind deconvolution of ultrasound images,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 44, No. 3, May 1997. [17] T. Stathaki, “Root moments: a digital signal-processing perspective,” IEE Proceedings of Vision, Image and Signal Processing, Vol. 145, No. 4, pp. 293-302, Aug. 1998. [18] T. Stathaki, A. Constantinides and G. Stathakis, “Minimum phase FIR filter design from linear phase systems using root moments,” Proceedings of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, pp. 1317-1320, May 1998. [19] T. Stathaki and I. Fotinopoulos, “Equiripple minimum phase FIR filter design from linear phase systems using root moments,” IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing, Vol. 48, No. 6, pp. 580-587, June 2001. [20] H. J. Orchard and A. N. Willson, Jr., “On the computation of a minimum-phase spectral factor,” IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, Vol. 50, No. 3, pp. 365-375, Mar. 2003. [21] A. Polydoros and A. T. Fam, “The differential cepstrum definition and properties,” Proceedings of IEEE International Symposium on Circuits and Systems, pp. 77, Apr. 1981. [22] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 2nd edition, Prentice Hall International, Inc. [23] J. M. Tribolet, Seismic Applications of Homomorphic Signal Processing, Prentice Hall International, Inc. [24] A. V. Oppenheim, “Superposition in a Class of Nonlinear Systems,” Technical Report No. 432, Research Laboratory of Electronics, M.I.T., Cambridge, Mass., Mar. 1965. [25] A. V. Oppenheim and R. W. Schafer, “Homomorphic Analysis of Speech,” IEEE Transactions on Audio Electroacoust., Vol. 16, No. 2, pp. 221-226, June 1968. [26] B. P. Bogert, M. J. Healy and J. W. Tukey, “The quefrency analysis of time series for echoes: cepstrum, pseudo-auto-covariance, cross-cepstrum, and saphe cracking,” Time Series Analysis, John Wiley & Sons, Inc., New York, pp. 209-243, Chap. 15, 1963. [27] A. V. Oppenheim and R. W. Schafer, “Digital Signal Processing,” Prentice Hall, Inc., 1975. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35858 | - |
dc.description.abstract | 在第一部份,我們提出一個最平坦濾波器的架構。它的優點是架構中不包含任何的乘法器,只需要使用加法和延遲元件。之後,我們將此一維濾波器的架構延伸到二維的情況去,可以得到一個近似圓型或橢圓型的最平坦濾波器設計。並且我們還可以將這些基本型的濾波器進一步在頻域上作位移或旋轉,得到頻譜位移或頻譜旋轉的濾波器型態。
在第二部份,我們討論最小相位濾波器的設計。首先我們會複習一些同相系統(homomorphic system)的觀念;然後介紹一些以倒頻譜(cepstrum)或其他方式為基礎去設計最小相位濾波器的方式。最後,我們提出利用實數倒頻譜(real cepstrum)的設計方法,它的好處是在設計過程上的複雜度跟其它的方法比起來比較低,而且可以得到與設計雛形一樣的大小頻率響應。 | zh_TW |
dc.description.abstract | In part I of this dissertation, a structure is proposed to acquire the maximally flat lowpass FIR filter. The advantage is that the multiplication elements are not included. Only the addition and delay elements are required. Afterward, the 1-dimensional multiplierless maximally flat designs are extended to the 2-dimensional cases to acquire the quasi-circular-shaped or quasi-ellipse-shaped maximally flat FIR filters. Moreover, the spectrum-shifted and spectrum-rotated versions of the basic
2-dimensional maximally flat prototypes have been designed. In part II, we deal with the minimum-phase filters design. First the concepts of the homomorphic systems and complex cepstrum are reviewed. Then several cepstrum-based or non-cepstrum-based approaches are reviewed. Finally, we propose our minimum-phase filters design based on real cepstrum. This method has many advantages over other existing approaches concerning the complexity of the design process. Moreover, it is emphasized that the resulting magnitude response is the same with the original prototype. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:47:37Z (GMT). No. of bitstreams: 1 ntu-94-R92942079-1.pdf: 6764058 bytes, checksum: 4910d8c19f2d483eb4134a0ce8369097 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | Part I Maximally Flat Filters Design p1
Chapter 1 Introduction p3 Chapter 2 The 1-Demensional Multiplierless Linear Phase Maximally Flat FIR Filters Design p5 2.1 Introduction p5 2.2 First-Order Lowpass/Highpass FIR Filters p6 2.3 Flattened Magnitude Response on Stopband p8 2.4 Maximally Flat Magnitude Response p9 2.5 Maximally-Flat FIR Filters Designs Using Other Kernels p19 2.6 Summary p23 Chapter 3 The 2-Dimensional Maximally-Flat Filters Design p25 3.1 Introduction p25 3.2 Design of Circular flat-topped Gaussian filters p26 3.3 Design of Elliptic flat-topped Gaussian filters p35 3.4 Design of Spectrum-Shifted Maximally-Flat Filters p39 3.5 Design of Spectrum-Rotated Maximally-Flat Filters p42 3.6 Summary p49 Chapter 4 Conclusion and Future Work p51 Part II Homomorphic Systems and Minimum-Phase FIR Filter Design p53 Chapter 5 Introduction p55 Chapter 6 Homomorphic Systems p59 6.1 Introduction p59 6.2 Generalized Principle of Superposition p60 6.3 Canonical Decomposition of Homomorphic Systems p61 6.4 Homomorphic Systems for Multiplication p65 6.5 Homomorphic Systems for Convolution: Complex Cepstrum p67 6.6 Properties of the Complex Cepstrum p74 6.7 Summary p77 Chapter 7 The Existing Methods for Minimum-Phase FIR Filters Design p79 7.1 Introduction p79 7.2 Herrmann and Schuessler’s Approach p81 7.3 Application of Complex Cepstrum on the Equiripple Minimum-Phase FIR Filters Design p84 7.4 Application of Differential Cepstrum on the Equiripple Minimum-Phase FIR Filters Design p86 7.5 Application of Root Moments on the Equiripple Minimum-Phase FIR Filters Design p89 7.6 Newton-Raphson Algorithm for Spectral Factorization p92 7.7 Summary p94 Chapter 8 Minimum-Phase FIR Filter Design Using Real Cepstrum p97 8.1 Introduction p97 8.2 Basic Concepts on Cepstrum p97 8.3 Construction of Minimum-Phase Sequence p100 8.4 Allpass Filtering Viewpoint p102 8.5 Design Examples p104 8.6 Summary p104 Chapter 9 Conclusion and Future Work p109 Bibliography p111 | |
dc.language.iso | en | |
dc.title | 最小相位與無乘法器之最平坦FIR濾波器設計 | zh_TW |
dc.title | Novel Design of Minimum-Phase and Multiplierless Maximally-Flat FIR Filters | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 馮世邁,張豫虎,祁忠勇 | |
dc.subject.keyword | 最平坦濾波器,高斯濾波器,無乘法器,最小相位,倒頻譜,實數倒頻譜,根動差,求根, | zh_TW |
dc.subject.keyword | maximally-flat filter,Gaussian filter,multiplierless,minimum-phase,cepstrum,real cepstrum,root moments,root finding, | en |
dc.relation.page | 113 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-26 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 6.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。