Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35857
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭鴻基(Hung-Chi Kuo)
dc.contributor.authorPei-Wen Chenen
dc.contributor.author陳珮雯zh_TW
dc.date.accessioned2021-06-13T07:47:37Z-
dc.date.available2005-08-01
dc.date.copyright2005-07-29
dc.date.issued2005
dc.date.submitted2005-07-26
dc.identifier.citation謝建輝,2003: 渦旋垂直偶合之動力研究。國立台灣大學大氣科學研究所碩士論文,共52頁。
郭郁芬,2004: 雙眼牆形成之正壓動力探討。國立台灣大學大氣科學研究所碩士論文,共72頁。
Anthes, R. A., 1982: Tropical cyclones: their Evolution, structure and effects. Meteor. Monogr., No. 41, Amer. Meteor. Soc., 208pp.
Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947-957.
DeMaria, M., and J. C. L. Chan, 1984 : Comments on ‘A numerical study of the interactions between two tropical cyclones.’ Mon. Wea. Rev., 112, 1649-1645.
______, 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076-2087.
Dodge, P., R. W. Burpee, and F. D. Marks Jr., 1999: The kinematic structure of a hurricane with sea level pressure less than 900 mb. Mon. Wea. Rev., 127, 987-1004.
Drischel, D. G., and D. W. Waugh, 1992: Quantification of inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids, A4, 1737-1744.
Flatau, M., W. H. Schubert, and D. E. Steven, 1994: The role of baroclinic processes in tropical cyclone motion: The influence of vertical tilt. J. Atmos. Sci., 51, 2589-2601.
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700.
Hawkins, J. D., and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristic. Preprints, 26th Conference on Hurricane and Tropical Meteorology, Miami, Fl., Amer. Meteor. Soc., 276-277.
Hoose, H. M., and J. A. Colón, 1970: Some aspects of the radar structure of Hurricane Beulah on September 9, 1967. Mon. Wea. Rev., 98, 529-533.
Jones, S., C., 1995: The evolution of vortices in vertical shear: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821-851.
Kossin, J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interaction between a hurricane’s primary eyewall and secondary ring of enhanced vorticity. J. Atmos. Sci., 57, 3893-3917.
Kuo, H.,-C., G. T.-J. Chen, and C.-H Lin, 2000: Merger of tropical cyclones Zeb and Alex. Mon. Wea. Rev., 128, 2967-2975.
______, L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structure in typhoons. J. Atmos. Sci., 61, 2722-2734.
Lander, M., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. I: Observations. Quart. J. Roy. Meteor. Soc., 119, 1347-1361.
McWilliams, J. C., 1984: The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146, 21-43.
______, 2004: Geophysical Fluid Dynamics. Course note
Montgomery, M. T., and R. J. Kallenback, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricane. Quart. J. Roy. Meteor. Soc., 123, 435-465.
Reasor, P. D., M. T. Montgomery and L. D. Grasso. 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 3–22.
Riehl, H. and R. J. Shafer, Major. 1944: The recurvature of tropical storms. J. Atmos. Sci., 1, 42–54.
Rozoff, C. M., W. H. Schubert, and B. D. McNoldy, 2004: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., in press.
Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687-1697.
______, and M. DeMaria, 1985: Axisymmetric, primitive equation, spectral tropical cyclone model. Part I: Formulation. J. Atmos. Sci.,42, 1213-1224.
Shapiro, L. J., and W. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci.,39, 378-394.
______, and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 3322-3335.
Wang, Y. Q., and G. J. Holland, 1995: On the interaction of tropical-cyclone-scale vortices. IV : Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 121, 95-126.
Willoughby, H. E., J. A. Clos, and M. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex.. J. Atmos. Sci., 39, 395-411.
______, F. D. Marks, Jr. and R. J. Feinberg, 1984 : Stationary and propagating convective bands in asymmetric hurricanes. J. Atmos. Sci., 41,3189-3211.
Wu, C.-C., and K. A. Emanuel, 1993: Interaction of a baroclinic vortex with background shear: Application to hurricane movement. J. Atmos. Sci., 50, 62-76.
______, and ______, 1994: On hurricane outflow structure. J. Atmos. Sci., 51, 1995–2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35857-
dc.description.abstractKuo et al. (2004) 依據觀測將颱風雙眼牆結構形成動力過程理想化為一小而強的渦旋 (代表颱風中心渦旋) 及一大而弱的渦旋 (代表眼四周因濕對流所產生之不對稱渦旋區) 之雙渦旋交互作用;本論文將此雙渦旋交互作用概念加以延伸,以兩層淺水模式進行數值模擬,探討在絕熱、無環境垂直風切的情況下,考慮垂直結構後,上層結構對於雙眼牆形成過程之影響。
模擬結果顯示,上下層初始位渦比(A)及上下層平均厚度比(δ)則是影響下層雙眼牆結構形成與否的重要因子:當A愈大(上層渦旋愈強)或δ愈大(下層平均厚度愈薄)時,模擬結果將由雙眼牆結構 (concentric eyewall) 過渡至三極渦旋 (tripole) 及單一渦旋 (monopole),表示當上層對下層造成較大的擾動,將抑制雙眼牆結構的形成,而此過渡過程與正壓實驗中改變耗散係數(υ)或渦度強度比(γ)相同。在帶狀化時間尺度(filamentation time scale)分析上顯示,初始快速帶狀化時間區的寬度為決定雙眼牆結構是否形成重要因子,當其寬度較窄時,則moat的尺度較小,便不易出現雙眼牆結構。另外分析能量變化之特性:因上下層流體密度差異導致渦旋組織對稱化的能力不同而發生垂直傾斜,使得動能不再守恆,渦度擬能(enstrophy)則會發生串跌(cascade)現象,但其值會隨時間上下變動,此稱為superposition現象。我們依據superpositon的變化,可將能量的變化情形分為兩類:type I (superposition不明顯),渦旋呈一定傾斜度垂直互繞,此類型好發生於A = 3/4個案;type II (superposition明顯),其傾斜度會隨時間變化,且傾斜度與上下渦旋之結構有密切關係。再者,再加強(re-enforcement)的機制可能有利於下層雙眼牆的形成。若將使得上層的渦度增加,在一定強度的比例之下(A = 5.2/4左右),此時上層的擾動反而有助於下層雙眼牆的形成。但是必須有一特定的配置下才會發生再加強之情況,進而有助於雙眼牆結構的形成。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T07:47:37Z (GMT). No. of bitstreams: 1
ntu-94-R92229015-1.pdf: 31541992 bytes, checksum: 712f8a11a5df5c12a6a0fb8a07a954e8 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents摘要 p.i
目錄 p.ii
圖表說明 p.iv
第一章 前言 p.1
1.1 正壓動力探討 p.2
1.2 斜壓動力探討 p.5
1.3 動機 p.7
第二章 數值模式 p.10
2.1 模式簡介 p.10
2.2 模式計算流程 p.11
2.3 模式特性測試 p.12
2.4 模式設定 p.14
第三章 數值模擬 p.16
3.1 線性分析 p.16
3.2 雙眼牆實驗模擬 p.19
3.3 正、斜壓模分析 p.27
3.4 帶狀化時間尺度分析 p.28
3.5 再加強(re-enforcement)實驗 p.30
第四章 總結及討論 p.32
4.1 總結 p.32
4.2 討論 p.34
誌謝 p.37
參考文獻 p.38
圖表 p.44
附錄 p.84
dc.language.isozh-TW
dc.subject颱風雙眼牆結構zh_TW
dc.subject斜壓過程zh_TW
dc.subject雙渦旋交互作用zh_TW
dc.subjectconcentric eyewallen
dc.subjectbinary vortex interactionen
dc.subjectbarolinic vorticesen
dc.title斜壓雙渦旋交互作用--颱風雙眼牆結構之形成zh_TW
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周仲島,李清勝,吳俊傑,黃清勇
dc.subject.keyword颱風雙眼牆結構,雙渦旋交互作用,斜壓過程,zh_TW
dc.subject.keywordconcentric eyewall,binary vortex interaction,barolinic vortices,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2005-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
30.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved