請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35852
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陽毅平(Yee-Pien Yang) | |
dc.contributor.author | Hsin-Chih Lin | en |
dc.contributor.author | 林信志 | zh_TW |
dc.date.accessioned | 2021-06-13T07:47:34Z | - |
dc.date.available | 2016-06-30 | |
dc.date.copyright | 2011-08-04 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-22 | |
dc.identifier.citation | [1] T. Yasuda, D. Furikado, and K. Tanaka, 'One hand drive wheelchair with new manipulation mechanism and assist functions,' in IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp. 2833-2838.
[2] K. Sakai, T. Yasuda, and K. Tanaka, 'Improvements of manipulation torque transfer mechanism and assist unit for one hand drive wheelchair with a triple ring,' in IEEE International Conference on Robotics and Biomimetics, Guilin, China, 2009, pp. 196-201. [3] K. Sakai, T. Yasuda, and K. Tanaka, 'Power assist effects of a new type assist unit in a one hand drive wheelchair with a triple ring,' in IEEE International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2010, pp. 6040-6045. [4] M. Wada, 'Holonomic and omnidirectional wheelchairs with synchronized 4WD mechanism,' in IEEE International Conference on Intelligent Robots and Systems, San Diego, CA, 2007, pp. 1196-1202. [5] T. Masuzawa, Y. Nakajima, H. Ikeda, and S. Minami, 'Development of all directional powered wheelchair,' in IEEE Vehicle Power and Propulsion Conference, Harbin, China, 2008, pp. 1-2. [6] H. W. V. Chew and R. M. Inigo, 'Electric wheelchair propulsion by induction motors,' in IEEE Southeastcon Proceedings 1996 (IEEE Conference Publications. Ch Series), Florida, USA, 1996, pp. 37-40. [7] J.-U. Chu, I.-H. Moon, G.-W. Choi, J.-C. Ryu, and M.-S. Mun, 'Design of BLDC motor controller for electric power wheelchair,' in IEEE International Conference on Mechatronics, Istanbul, Turkey, 2004, pp. 92-97. [8] A. Lidozzi, L. Solero, F. Crescimbini, and A. Di Napoli, 'SVM PMSM drives with low resolution Hall-effect sensors,' in IEEE Power Electronics Specialists Conference, Recife, Brazil, 2005, pp. 1580-1586. [9] A. Lidozzi, L. Solero, F. Crescimbini, and A. Di Napoli, 'SVM PMSM drive with low resolution Hall-effect sensors,' IEEE Transactions on Power Electronics, vol. 22, pp. 282-290, Jan. 2007. [10] Y.-P. Yang, W.-C. Huang, and C.-W. Lai, 'Optimal design of rim motor for electric powered wheelchair,' IET Electric Power Applications, vol. 1, pp. 825-832, 2007. [11] Y.-P. Yang and Z.-H. Lee, 'A novel wheelchair powered by dual rim motors,' in IEEE International Electric Machines and Drives Conference, Miami, Florida, 2009, pp. 1284-1289. [12] A. Darba, M. Esmalifalak, and E. S. Barazandeh, 'Implementing SVPWM technique to axial flux permanent magnet synchronous motor drive with internal model current controller,' in International Power Engineering and Optimization Conference, Selangor, Malaysia, 2010, pp. 126-131. [13] W. Zheng, K. T. Chau, and M. Cheng, 'A chaotic PWM motor drive for electric propulsion,' in IEEE Vehicle Power and Propulsion Conference, Harbin, China, 2008, pp. 1-6. [14] L. Yong, Z. Q. Zhu, and D. Howe, 'Commutation-torque-ripple minimization in direct-torque-controlled PM brushless DC drives,' IEEE Transactions on Industry Applications, vol. 43, pp. 1012-1021, 2007. [15] H.-F. Lu, L. Zhang, and W.-L. Qu, 'A new torque control method for torque ripple minimization of BLDC motors with un-ideal back EMF,' IEEE Transactions on Power Electronics, vol. 23, pp. 950-958, 2008. [16] T.-N. Shi, Y.-T. Guo, P. Song, and C.-L. Xia, 'A new approach of minimizing commutation torque ripple for brushless DC motor based on DC-DC converter,' IEEE Transactions on Industrial Electronics, vol. 57, pp. 3483-3490, 2010. [17] I. Kim, N. Nakazawa, S. Kim, C. Park, and C. Yu, 'Compensation of torque ripple in high performance BLDC motor drives,' Control Engineering Practice, vol. 18, pp. 1166-1172, 2010. [18] Q. Fu, H. Lin, and H.-T. Zhang, 'Single-current-sensor sliding mode driving strategy for four-switch three-phase brushless DC motor,' in IEEE International Conference on Industrial Technology, Mumbai, India, 2006, pp. 2396-2401. [19] C.-L. Xia, Z.-Q. Li, and T.-N. Shi, 'A control strategy for four-switch three-phase brushless DC motor using single current sensor,' IEEE Transactions on Industrial Electronics, vol. 56, pp. 2058-2066, 2009. [20] S. B. Ozturk, W. C. Alexander, and H. A. Toliyat, 'Direct torque control of four-switch brushless DC motor with non-sinusoidal back-EMF,' in IEEE Power Electronics Specialists Conference, Rhodes, Greece, 2008, pp. 4730-4736. [21] S. B. Ozturk, W. C. Alexander, and H. A. Toliyat, 'Direct torque control of four-switch brushless DC motor with non-sinusoidal back EMF,' IEEE Transactions on Power Electronics, vol. 25, pp. 263-271, 2010. [22] D. D. Dhawale, J. G. Chaudhari, and M. V. Aware, 'Position control of four switch three phase BLDC motor using PWM control,' in International Conference on Emerging Trends in Engineering and Technology, Jaipur, India, 2010, pp. 374-378. [23] V. Krishnakumar and S. Jeevanandhan, 'Four switch three phase inverter control of BLDC motor,' in International Conference on Electrical Energy Systems, Chennai, India, 2011, pp. 139-144. [24] C.-T. Lin, C.-W. Hung, and C.-W. Liu, 'Position sensorless control for four-switch three-phase brushless DC motor drives,' IEEE Transactions on Power Electronics, vol. 23, pp. 438-444, 2008. [25] A. H. Niasar, A. Vahedi, and H. Moghbelli, 'A novel position sensorless control of a four-switch brushless DC motor drive without phase shifter,' IEEE Transactions on Power Electronics, vol. 23, pp. 3079-3087, 2008. [26] M. Ebadpour, M. B. B. Sharifian, and M. R. Feyzi, 'A simple position sensorless control strategy for four-switch three-phase brushless DC motor drives using single current sensor,' in Power Electronics, Drive Systems and Technologies Conference, Tehran, Iran, 2011, pp. 235-240. [27] W.-J. Lee and S.-K. Sul, 'A new starting method of BLDC motors without position sensor,' IEEE Transactions on Industry Applications, vol. 42, pp. 1532-1538, 2006. [28] K.-W. Lee, D.-K. Kim, B.-T. Kim, and B.-I. Kwon, 'A novel starting method of the surface permanent-magnet BLDC motors without position sensor for reciprocating compressor,' IEEE Transactions on Industry Applications, vol. 44, pp. 85-92, 2008. [29] S. B. Ozturk and H. A. Toliyat, 'Direct torque and indirect flux control of brushless DC motor,' IEEE/ASME Transactions on Mechatronics, vol. 16, pp. 351-360, 2011. [30] X.-Z. Zhang and Y.-N. Wang, 'A novel position-sensorless control method for brushless DC motors,' Energy Conversion and Management, vol. 52, pp. 1669-1676, 2011. [31] M. Booka, O. Sueda, and S. Fujisawa, 'A study of powered wheelchair operation,' in International Conference on Instrumentation, Control and Information Technology, Kagawa, Japan, 2007, pp. 834-837. [32] Y. Oonishi, O. Sehoon, and Y. Hori, 'A new control method for power-assisted wheelchair based on the surface myoelectric signal,' in IEEE Industrial Electronics Society Conference, Taipei, Taiwan, 2007, pp. 356-361. [33] N. Tanohata and H. Seki, 'Driving control of electric power assisted wheelchair based on neural network learning of human characteristics,' in IEEE Industrial Electronics Conference, Porto, Portugal, 2009, pp. 4185-4190. [34] M. Onishi, K. Kobayashi, and K. Watanabe, 'A study of intuitive electric wheelchair control interface based on weight shift,' in International Conference on Instrumentation, Control and Information Technology, Tokyo, Japan, 2008, pp. 2710-2713. [35] M. Yamamoto, T. Ikeda, and Y. Sasaki, 'Real-time analog input device using breath pressure for the operation of powered wheelchair,' in IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 2008, pp. 3914-3919. [36] M. Fezari, A. Khati, and H. Attoui, 'Embedded system based on multiprocessors to improve the control of a motorised wheelchair,' in International Conference on Design & Technology of Integrated Systems in Nanoscal Era, Cairo, Egypt, 2009, pp. 167-170. [37] X.-L. Huo and M. Ghovanloo, 'Using unconstrained tongue motion as an alternative control mechanism for wheeled mobility,' IEEE Transactions on Biomedical Engineering, vol. 56, pp. 1719-1726, 2009. [38] A. Sasou, 'Acoustic head orientation estimation applied to powered wheelchair control,' in International Conference on Robot Communication and Coordination, Odense, Denmark, 2009, pp. 1-6. [39] J. S. Ju, Y. Shin, and E. Y. Kim, 'Intelligent wheelchair using head tilt and mouth shape,' Electronics Letters, vol. 45, pp. 873-875, 2009. [40] D. J. Kupetz, S. A. Wentzell, and B. F. BuSha, 'Head motion controlled power wheelchair,' in IEEE Northeast Bioengineering Conference, New York, USA, 2010, pp. 1-2. [41] N. Sekine, A. Nakamura, Y. Fujimoto, and T. Yamaguchi, 'Development of Intelligent Power Wheelchair assisting for people on daily life using motion recognition,' in IEEE International Workshop on Advanced Motion Control, Niigata, Japan, 2010, pp. 302-306. [42] D. A. Sanders, M. Langner, and G. E. Tewkesbury, 'Improving wheelchair-driving using a sensor system to control wheelchair-veer and variable-switches as an alternative to digital-switches or joysticks,' Industrial Robot: An International Journal, vol. 37, pp. 157-167, 2010. [43] A. H. Hoffman and K. N. Liadis, 'Design of a power-assist wheelchair for persons with hemiplegia,' in IEEE Conference on Technologies for Practical Robot Applications, Greater Boston Area, Massachusetts, USA, 2011, pp. 45-48. [44] Y. Kinpara, E. Takano, Y. Kobayashi, and Y. Kuno, 'Situation-driven control of a robotic wheelchair to follow a caregiver,' in Korea-Japan Joint Workshop on Frontiers of Computer Vision, Ulsan, Korea, 2011, pp. 1-6. [45] M. Al-Rousan and K. Assaleh, 'A wavelet- and neural network-based voice system for a smart wheelchair control,' Journal of the Franklin Institute, vol. 348, pp. 90-100, 2011. [46] R. A. Cooper, 'Intelligent control of power wheelchairs,' IEEE Engineering in Medicine and Biology Magazine, vol. 14, pp. 423-431, 1995. [47] R. A. Cooper, L. M. Widman, D. K. Jones, R. N. Robertson, and J. F. Ster, 'Force sensing control for electric powered wheelchairs,' IEEE Transactions on Control Systems Technology, vol. 8, pp. 112-117, 2000. [48] H. M. Shim, J. P. Hong, S. B. Chung, and S. H. Hong, 'A powered wheelchair controller based on master-slave control architecture,' in IEEE International Symposium on Industrial Electronics, Pusan, Korea, 2001, pp. 1553-1556. [49] D. Ding and R. A. Cooper, 'Electric powered wheelchairs,' IEEE Control Systems, vol. 25, pp. 22-34, 2005. [50] H. Seki and S. Tadakuma, 'Velocity pattern generation for power assisted wheelchair based on jerk and acceleration limitation,' in IEEE Industrial Electronics Society Conference, Raleigh, North CA, USA, 2005, p. 6. [51] S. O. Onyango, Y. Hamam, M. Dabo, K. Djouani, and G. Qi, 'Dynamic control of an electrical wheelchair on an incline,' in IEEE AFRICON Conference, Nairobi, Kenya, 2009, pp. 1-6. [52] H. Wang, B. Salatin, G. G. Grindle, D. Ding, and R. A. Cooper, 'Real-time model based electrical powered wheelchair control,' Medical Engineering & Physics, vol. 31, pp. 1244-1254, 2009. [53] M. R. Petry, A. P. Moreira, R. A. M. Braga, and L. P. Reis, 'Shared control for obstacle avoidance in intelligent wheelchairs,' in IEEE Conference on Robotics Automation and Mechatronics, Singapore, 2010, pp. 182-187. [54] J.-H. Qiu, Z.-J. Wang, Y. Yang, L.-L. Yang, and X.-Y. Sun, 'Research of electrical powered wheelchair control system,' in International Conference on Computer Application and System Modeling, Taiyuan, China, 2010, pp. V5-333-V5-335. [55] H. Seki and S. Tadakuma, 'Novel straight and circular road driving control of electric power assisted wheelchair based on fuzzy algorithm,' Electrical Engineering in Japan, vol. 170, pp. 36-44, 2010. [56] N. Tanohata and H. Seki, 'Comfortable driving control for electric power-assisted wheelchair on disturbance road using fuzzy algorithm,' in IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 2010, pp. 130-135. [57] T. N. Nguyen, S. W. Su, and H. T. Nguyen, 'Robust neuro-sliding mode multivariable control strategy for powered wheelchairs,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, pp. 105-111, 2011. [58] G. Li and D.-T. Yu, 'The adaptive robust controller of antilock brake system of electric vehicles,' ACTA Automatica Sinica, vol. 32, pp. 444-449, 2006. [59] Y. Zhou, S. Li, Z. Fang, and Q. Zhou, 'Control strategy for ABS of EV with independently controlled four in-wheel motors,' in IEEE Conference on Industrial Electronics and Applications, Xi'an, China, 2009, pp. 2471-2476. [60] J. Wang, C.-X. Song, and L.-Q. Jin, 'A composite ABS control method for EV with four independently-driving wheels,' in International Workshop on Intelligent Systems and Applications, Wuhan, China, 2010, pp. 1-4. [61] J.-M. Zhang, B.-Y. Song, and X.-J. Niu, 'Optimization of parallel regenerative braking control strategy,' in IEEE Vehicle Power and Propulsion Conference, Harbin, China, 2008, pp. 1-4. [62] K. Takahashi, H. Seki, and S. Tadakuma, 'Safety driving control for electric power assisted wheelchair based on regenerative brake,' in IEEE International Conference on Industrial Technology, Mumbai, India, 2006, pp. 2492-2497. [63] M.-J. Yang, H.-L. Jhou, B.-Y. Ma, and K.-K. Shyu, 'A cost-effective method of electric brake with energy regeneration for electric vehicles,' IEEE Transactions on Industrial Electronics, vol. 56, pp. 2203-2212, 2009. [64] H. Seki, K. Ishihara, and S. Tadakuma, 'Novel regenerative braking control of electric power assisted wheelchair for optimal velocity driving on downhill road,' in IEEE International Workshop on Advanced Motion Control, Trento, Italy, 2008, pp. 510-515. [65] H. Seki, K. Ishihara, and S. Tadakuma, 'Novel regenerative braking control of electric power-assisted wheelchair for safety downhill road driving,' IEEE Transactions on Industrial Electronics, vol. 56, pp. 1393-1400, May 2009. [66] H. Seki and Y. Takahashi, 'Downward slope driving control for electric powered wheelchair based on capacitor regenerative brake,' in IEEE Industrial Electronics Conference, Porto, Portugal, 2009, pp. 2217-2222. [67] 黃偉禎, 新式電動輪椅馬達之最佳化設計與實現, 碩士論文, 國立台灣大學, 台北, 2005. [68] 賴俊文, 創新手輪馬達之設計與最佳化分析, 碩士論文, 國立台灣大學, 台北, 2006. [69] 李周翰, 手輪馬達驅動之電動輪椅的設計與製作, 碩士論文, 國立台灣大學, 台北, 2007. [70] 蔡豐州, 創新電動輪椅之手輪馬達最佳化設計與應用, 碩士論文, 國立台灣大學, 台北, 2010. [71] 經濟部智慧財產局. (2011, May 28). 發明第I 278308號─輪椅馬達驅動結構 [Online]. Available: http://twpat3.tipo.gov.tw/tipotwoc/tipotwkm?00320F BF3C03010100000000000100A00000003E000000000^__ [72] 魯珺田, 新型電動輪椅之手輪馬達動力輪的整合, 碩士論文, 國立台灣大學, 台北, 2011. [73] 陳勇嘉, 手輪馬達驅動式電動輪椅之控制系統的研發, 碩士論文, 國立台灣大學, 台北, 2011. [74] Atmel. (2009, May 28). AVR447: Sinusoidal driving of three-phase permanent magnet motor using ATmega48/88/168 [Online]. Available: http://www.atme l.com/dyn/resources/prod_documents/doc8010.pdf [75] Atmel. (2009, May 28). ATmega48/88/168 datasheet [Online]. Available: http://www.atmel.com/dyn/products/product_card.asp?part_id=3303 [76] Atmel. (2010, May 28). ATmega16M1/32M1/64M1/32C1/64C1 datasheet [Online]. Available: http://www.atmel.com/dyn/products/product_card.asp?par t_id=4307 [77] 經濟部標準局. (2009, May 28). CNS14964「輪椅─應用指導綱要」 [Online]. Available: http://www.bsmi.gov.tw/wSite/index.jsp [78] Fairchild-Semiconductor. (2009, May 28). AN-9044, Smart Power Module Motion-SPM in Mini DIP SPM Application Note [Online]. Available: http://www.fairchildsemi.com/an/AN/AN-9044.pdf [79] Fairchild-Semiconductor. (2009, May 28). FSBB30CH60C datasheet [Online]. Available: http://www.fairchildsemi.com/ds/FS/FSBB30CH60C.pdf [80] Fairchild-Semiconductor. (2009, May 28). FSB67508 datasheet [Online]. Available: http://www.fairchildsemi.com/ds/FS/FSB67508.pdf [81] Infineon. (2011, May 28). AN-CIPOS mini-2 Reference Board 1 for IGCM06B60xA [Online]. Available: http://www.lspst.com/down/AN-CIPOS %20mini-2%20Reference%20Board-1%20for%20IGCMxxF60GA_Ver.1.0%2020101021.pdf [82] Infineon. (2011, May 28). AN-CIPOS mini-2 Reference Board-3 for IGCMxxF60xA with 3-shunt [Online]. Available: http://www.lspst.com/down /AN-CIPOS%20mini-2%20Reference%20Board-3%20for%20IGCMxxF60GA%20with%203-shunt_Ver1.0%2020101021.pdf [83] Infineon. (2011, May 28). IGCM20F60GA datasheet [Online]. Available: http://www.lspst.com/common/FileDown.asp?pdfFile=IGCM20F60GA datash eet_Ver1.4_20110517.pdf [84] 涂凱翔, 手輪馬達電動輪椅控制器產品化設計、製造與驗證, 碩士論文, 國立台灣大學, 台北, 2010. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35852 | - |
dc.description.abstract | 本文研究目的在於開發並整合雙動力輪與控制策略,而形成新型手輪馬達電動輪椅。文中先介紹手輪馬達電動輪椅之研發歷程、目前無刷直流手輪馬達的特性、以及手輪馬達電動輪椅動力鏈系統之設計概念,其將手輪馬達、整合型電磁煞車、霍爾效應感測器、馬達驅動控制器與鋰鐵電池,結合成電動輪椅之動力輪,故一般輪椅車架只需加裝兩個動力輪即可成為電動輪椅,再經由無刷直流馬達運轉原理與驅動方式,選擇使用簡化弦波電流控制之方式驅動手輪馬達電動輪椅。
手輪馬達電動輪椅控制系統架構中著重手輪馬達速度控制,其策略使用緩起動速度控制、閉迴路速度控制、三相短路煞車控制與磁粉煞車控制,達到手輪馬達穩定的動態速度控制,並增加斷電式電磁煞車,提升手輪馬達電動輪椅在靜止時的安全性,以及斷電式電磁煞車之節能控制策略,有效地節省20 %的操作電流。 電動輪椅控制器之硬體架構分為上、下控制器,使用微控制器與整合式馬達驅動晶片做開發,參照國家標準CNS規範來設計,上控制器負責人機介面接收訊號、雙輪差速計算控制與安全限制條件,左右兩輪各別的下控制器透過防止EMI的設計規範以及電路板最小化設計,相較於第一版下控制器其體積縮小比例為79 %,尺寸為105 mm × 35 mm × 35 mm,因此更增加產品化的特色,下控制器負責接收速度命令配合簡化弦波驅動與煞車驅動完成雙手輪馬達速度控制。經過實驗測試驗證,本新型手輪馬達電動輪椅驅動控制系統已能實現穩定的速度控制,並達到斷電式電磁煞車的節能效果且具有產品化的基本功能。 | zh_TW |
dc.description.abstract | The aim of this study is to develop and integrate dual power wheels and control strategy for a novel powered wheelchair driven by rim motors. First, the historical and technological backgrounds of the powered wheelchair will be introduced, and the concept of designing a power train for a powered wheelchair will be illustrated. This power train contains two sets of rim motors, electromagnetic brakes, Hall-effect sensors, motor drives, and lithium iron phosphate batteries. Integration of these components establishes the system of power wheels. Installation of the dual power wheels on a commercial wheelchair frame turns a manually driven wheelchair into a powered wheelchair.
The control system focuses on the speed control of the powered wheelchair driven by rim motors, to which a simplified sinusoidal current waveform is applied. The strategy is to improve the rim motor by developing a control system consisting of a soft-starting, dual-wheel synchronous speed control, a three-phase short-circuit brake, and a powder brake that will maintain the safe and stable operation of the wheelchair. An automatic lock by an electromagnetic brake is also added for the consumer’s safety when the wheelchair is at rest. Power management of braking also provided a twenty percent savings in energy compared to the devices without any electromagnetic braking power management. The powered wheelchair controller is divided into an upper controller and a lower controller; both are researched and developed with microchips and motor driver ICs according to the Chinese National Standards (CNS). The upper controller is responsible for the human interface, dual-wheel differential speed control system, and safety restrictions. The lower controller receives commands from the upper controller and uses a simplified sinusoidal current waveform and brake control strategy to drive dual rim motors. The lower controller is designed to prevent electromagnetic interference and to minimize the size of the printed circuit board. Compared with the previous printed circuit board, the system volume is reduced by 79%, to a smaller size of 105 × 35 × 35 mm3. The experimental results indicate that the control system of the novel powered wheelchair driven by rim motors is stable, and the electromagnetic brake also achieves energy savings. Therefore, this product can be expected to be commercialized and to appear in shop windows soon. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:47:34Z (GMT). No. of bitstreams: 1 ntu-100-R97522810-1.pdf: 13502009 bytes, checksum: ee1bd0b27393565af41ddfdaf67627b1 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 I 誌謝 III 中文摘要 V Abstract VII 目錄 IX 圖目錄 XIII 表目錄 XXI 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 2 1-3 章節摘要 13 第二章 手輪馬達電動輪椅研發歷程 17 2-1 手輪馬達研發背景 17 2-2 手輪馬達研發目的與重要性 18 2-3 手輪馬達研發歷程 20 2-4 專利狀況與市面類似產品比較與評論 31 2-5 第五代手輪馬達設計結果 34 第三章 手輪馬達電動輪椅動力鏈系統 41 3-1 動力鏈系統簡介 41 3-2 無刷直流手輪馬達驅動原理 44 3-3 無刷直流手輪馬達驅動電流波型 56 第四章 手輪馬達電動輪椅控制系統 67 4-1 新型手輪馬達電動輪椅控制系統架構 67 4-2 無刷直流手輪馬達閉迴路速度控制 72 4-3 無刷直流手輪馬達煞車控制 78 4-4 無刷直流手輪馬達控制系統架構 91 第五章 手輪馬達電動輪椅驅動控制器硬體設計 95 5-1 微控制器 95 5-2 無刷直流馬達驅動器 98 5-3 電動輪椅控制器硬體架構 102 5-4 上控制器硬體設計 112 5-5 第一版下控制器硬體設計 119 5-6 第二版下控制器硬體設計 126 5-7 第二版更新下控制器硬體設計 135 第六章 性能測試與比較 141 6-1 實驗設備與場地 141 6-2 斷電式電磁煞車控制測試 148 6-3 第五代手輪馬達性能測試 151 6-4 手輪馬達電動輪椅測試比較 152 第七章 結論與未來展望 181 7-1 結論 181 7-2 未來展望 183 參考文獻 185 附錄A 第五代手輪馬達特性資料 193 圖目錄 圖2 1 第一代無刷直流手輪馬達結構示意圖 [67] 21 圖2 2 第一代無刷直流手輪馬達實體照片 [67] 21 圖2 3 第二代無刷直流手輪馬達結構示意圖 [68] 23 圖2 4 第二代無刷直流手輪馬達實體照片 [68] 24 圖2 5 手輪馬達轉子貼磁鐵的結構比較圖 [69] 26 圖2 6 第三代無刷直流手輪馬達定子槽口寬與力矩和力矩漣波比較圖 [69] 26 圖2 7 第三代無刷直流手輪馬達實體照片 [69] 26 圖2 8 第三代手輪馬達電動輪椅實體照片 [69] 27 圖2 9 第四代無刷直流手輪馬達結構示意圖 [70] 29 圖2 10 第四代無刷直流手輪馬達實體照片 [70] 29 圖2 11 第四代手輪馬達電動輪椅實體照片 [70] 31 圖2 12 手輪馬達設計程序流程圖 [70] 35 圖2 13 集中繞之繞組型態 [70] 36 圖2 14 磁鐵形狀修改圖 [70] 37 圖2 15 定子齒鞋修改圖 [70] 37 圖2 16 第五代無刷直流手輪馬達結構示意圖 39 圖3 1 動力輪結構分解圖 42 圖3 2 動力輪結構整合圖 43 圖3 3 外轉子型式永磁無刷直流馬達簡化模型圖 45 圖3 4 內轉子型式永磁無刷直流馬達簡化模型圖 45 圖3 5 佛來明定則示意圖 46 圖3 6 無刷直流馬達與電子換相裝置示意圖 46 圖3 7 霍爾效應感測器之構造與原理 47 圖3 8 霍爾感應開關工作電路示意圖 48 圖3 9 三相無刷直流馬達單一電氣週期轉子轉動示意圖 50 圖3 10 單相反電動勢波型與對應之霍爾開關訊號 50 圖3 11 理想梯形波反電動勢波型與對應之霍爾開關訊號 51 圖3 12 理想弦波反電動勢波型與對應之霍爾開關訊號 51 圖3 13 無刷直流馬達A、B、C三相Y接之理論反電動勢波型 52 圖3 14 六步方波驅動示意圖 54 圖3 15 永磁同步電動機A、B、C三相Y接之弦波反電動勢波型 55 圖3 16 脈衝寬度調變原理示意圖 57 圖3 17 脈衝寬度調變訊號與三角載波圖(Mf = 12) 58 圖3 18 脈衝寬度調變輸出開關訊號示意圖 58 圖3 19 無刷直流馬達三相Y接驅動架構 59 圖3 20 三相Y接無刷直流馬達模型 61 圖3 21 簡化弦波電流控制三相端電壓波型 65 圖4 1 新型手輪馬達電動輪椅控制系統架構圖 67 圖4 2 新型手輪馬達電動輪椅上控制器程式流程圖 70 圖4 3 新型手輪馬達電動輪椅下控制器程式流程圖 71 圖4 4 閉迴路速度控制系統 77 圖4 5 速度命令度量轉換示意圖 77 圖4 6 速度命令與補償命令度量轉換PWM負載週期示意圖 77 圖4 7 霍爾感測器訊號對照無刷直流馬達反電動勢波型圖 78 圖4 8 三相下橋短路示意圖 80 圖4 9 無刷直流馬達三相Y接弦波反電動勢波型 81 圖4 10 0度∼60度電氣角之煞車電流狀態 82 圖4 11 60度∼120度電氣角之煞車電流狀態 82 圖4 12 120度∼180度電氣角之煞車電流狀態 82 圖4 13 180度∼240度電氣角之煞車電流狀態 83 圖4 14 240度∼300度電氣角之煞車電流狀態 83 圖4 15 300度∼360度電氣角之煞車電流狀態 83 圖4 16 60度∼120度電氣角之馬達等效電路(反電動勢由B相到A相) 84 圖4 17 磁粉煞車負載週期控制曲線圖 86 圖4 18 仟岱斷電式電磁煞車負載週期控制曲線圖 89 圖4 19 整合型電磁煞車之斷電式電磁煞車負載週期控制曲線圖 90 圖4 20 閉迴路速度控制系統(包含磁粉煞車控制策略) 91 圖4 21 無刷直流手輪馬達整體控制策略流程圖 92 圖5 1 微控制器ATmega32M1基本周邊電路 98 圖5 2 單一個半橋反相互補負載週期控制訊號與空載時間 99 圖5 3 Power MOSFET與IGBT之元件圖形 100 圖5 4 開關元件驅動電路示意圖 101 圖5 5 電子裝置單點接地示意圖 107 圖5 6 電子裝置多點接地示意圖 108 圖5 7 差模式雜訊電壓 108 圖5 8 共模式雜訊電壓 109 圖5 9 3 W佈線法則示意圖 110 圖5 10 20 H佈線法則示意圖 110 圖5 11 佈線方式示意圖 111 圖5 12 新型手輪馬達電動輪椅之控制器硬體架構圖 112 圖5 13 上控制器電路模組示意圖 113 圖5 14 上控制器正面實體圖 113 圖5 15 上控制器反面實體圖 113 圖5 16 微控制器ATmega168基本周邊電路 114 圖5 17 上控制器電源電路 115 圖5 18 人機介面之按鈕控制電路圖 115 圖5 19 電池殘電量LED燈顯示控制電路 116 圖5 20 速度檔位LED燈顯示控制電路 117 圖5 21 MAX488E晶片之腳位圖 118 圖5 22 上控制器RS485介面轉換晶片電路圖 118 圖5 23 電池充電狀態示意圖 118 圖5 24 微控制器燒錄腳位與電路圖 119 圖5 25 第一版下控制器電路模組示意圖 120 圖5 26 第一版下控制器實體圖 120 圖5 27 第一版下控制器元件分部實體圖 121 圖5 28 FSBB30CH60C智慧型功率模組實體圖 122 圖5 29 FSBB30CH60C智慧型功率模組腳位與內部電路圖 122 圖5 30 FSBB30CH60C智慧型功率模組周邊電路圖 123 圖5 31 霍爾效應感測器電路圖 124 圖5 32 光耦合器TLP250腳位與內部電路圖 125 圖5 33 第一版繼電器與斷電式電磁煞車控制電路圖 125 圖5 34 下控制器電源電路 126 圖5 35 第二版下控制器電路模組示意圖 127 圖5 36 第一版下控制器實體尺寸圖 128 圖5 37 第二版下控制器實體尺寸圖 128 圖5 38 第二版下控制器電路佈線圖 129 圖5 39 第二版下控制器正面元件擺放圖 130 圖5 40 第二版下控制器第一、二層電路佈線圖 130 圖5 41 FSB67508智慧型功率模組實體圖 132 圖5 42 FSB67508智慧型功率模組腳位與內部電路圖 132 圖5 43 FSB67508智慧型功率模組周邊電路圖 133 圖5 44 固態繼電器控制電路圖 134 圖5 45 第二版斷電式電磁煞車與磁粉煞車控制電路圖 134 圖5 46 第二版更新下控制器電路模組示意圖 135 圖5 47 第二版更新下控制器正面實體尺寸圖 135 圖5 48 第二版更新下控制器反面實體尺寸圖 136 圖5 49 第二版更新下控制器電路佈線圖 136 圖5 50 第二版更新下控制器元件擺放圖 136 圖5 51 第二版更新下控制器第一、二層電路佈線圖 137 圖5 52 IGCM20F60GA控制集成功率系統實體圖 138 圖5 53 IGCM20F60GA控制集成功率系統腳位與內部電路圖 138 圖5 54 IGCM20F60GA控制集成功率系統周邊電路圖 139 圖5 55 第二版更新之斷電式電磁煞車與磁粉煞車控制電路圖 140 圖6 1 斷電式電磁煞車測試平台功能連接圖 142 圖6 2 鋰鐵電池 142 圖6 3 電腦連接微控制器與馬達驅動器 142 圖6 4 斷電式電磁煞車與磁粉煞車驅動器 143 圖6 5 仟岱斷電式電磁煞車 143 圖6 6 創新整合型電磁煞車 143 圖6 7 Tektronix電流探針 144 圖6 8 Tektronix數位示波器 144 圖6 9 無刷直流馬達MEA MotorLab® PPML-B測試平台功能連接圖 144 圖6 10 電源供應器 145 圖6 11 無刷直流馬達MEA MotorLab® PPML-B測試平台實際測試照片 145 圖6 12 上控制器 146 圖6 13 下控制器 146 圖6 14 第五代新型手輪馬達電動輪椅實體照片 146 圖6 15 平地行走測試場地 147 圖6 16 7度(12.5 %)上下坡行走測試場地 147 圖6 17 台大水源校區環型道路 148 圖6 18 仟岱斷電式電磁煞車操作電流圖 149 圖6 19 創新整合型電磁煞車之斷電式電磁煞車操作電流圖 149 圖6 20 第五代無刷直流手輪馬達力矩對轉速圖 151 圖6 21 第五代無刷直流手輪馬達效率對轉速圖 152 圖6 22 簡化弦波電流控制之PWM驅動訊號 153 圖6 23 簡化弦波電流控制之A相端電壓驅動波型 154 圖6 24 簡化弦波電流控制之B相端電壓驅動波型 154 圖6 25 簡化弦波電流控制之C相端電壓驅動波型 154 圖6 26 簡化弦波電流控制之相電流弦波波型 155 圖6 27 搖桿角度與輸出電壓關係圖 155 圖6 28 閉迴路速度控制與無緩起動速度控制之空載速度曲線 156 圖6 29 閉迴路速度控制與有緩起動速度控制之空載速度曲線 157 圖6 30 開路速度控制與無煞車控制之空載速度曲線 159 圖6 31 開路速度控制與有煞車控制之空載速度曲線 160 圖6 32 閉迴路速度控制與無煞車控制之空載速度曲線 161 圖6 33 閉迴路速度控制與有煞車控制之空載速度曲線 162 圖6 34 開路速度控制與無煞車控制之有載平地速度曲線 164 圖6 35 開路速度控制與有煞車控制之有載平地速度曲線 164 圖6 36 閉迴路速度控制與無煞車控制之有載平地速度曲線 166 圖6 37 閉迴路速度控制與有煞車控制之有載平地速度曲線 166 圖6 38 開路速度控制與三相短路煞車控制之有載平地速度曲線 168 圖6 39 開路速度控制與磁粉煞車控制之有載平地速度曲線 169 圖6 40 開路速度控制與有煞車控制之有載上坡速度曲線 171 圖6 41 閉迴路速度控制與有煞車控制之有載上坡速度曲線 172 圖6 42 開路速度控制與有煞車控制之有載下坡速度曲線 174 圖6 43 閉迴路速度控制與有煞車控制之有載下坡速度曲線 175 表目錄 表2 1 第一代無刷直流手輪馬達之尺寸規格表 [67] 22 表2 2 第一代無刷直流手輪馬達之模擬分析性能表 [67] 22 表2 3 第一代無刷直流手輪馬達之測試性能表 [68] 22 表2 4 第二代無刷直流手輪馬達之尺寸規格表 [68] 24 表2 5 第二代無刷直流手輪馬達之模擬分析性能表 [68] 25 表2 6 第二代無刷直流手輪馬達之測試性能表 [68] 25 表2 7 第三代無刷直流手輪馬達之尺寸規格表 [69] 27 表2 8 第三代無刷直流手輪馬達之模擬分析性能表 [69] 28 表2 9 第三代無刷直流手輪馬達之測試性能表 [69] 28 表2 10 第四代無刷直流手輪馬達之尺寸規格表 [70] 30 表2 11 第四代無刷直流手輪馬達之模擬分析性能表 [70] 30 表2 12 第四代無刷直流手輪馬達之測試性能表 [70] 31 表2 13 市售可攜式輕型電動輪椅整合比較表 33 表2 14 手輪馬達電動輪椅規格表 [70] 34 表2 15 手輪馬達需求規格表 [70] 35 表2 16 三種齒極比的輸出性能比較表 [70] 36 表2 17 手輪馬達參數最佳化尺寸 [70] 36 表2 18 磁路模型與有限元素分析的手輪馬達參數 [70] 38 表3 1 整合型電磁煞車設計規格表 [72] 43 表3 2 六步方波驅動相位表 53 表3 3 簡化弦波電流控制三相端電壓表 63 表3 4 平移整理後簡化弦波電流控制三相端電壓表 63 表4 1 PID控制系統之參數 76 表4 2 CNS標準測試結果整合表 79 表4 3 整合型電磁煞車之磁粉煞車操作狀態表 85 表4 4 仟岱斷電式電磁煞車(SMB003AA)操作狀態表 88 表4 5 整合型電磁煞車之斷電式電磁煞車操作狀態表 88 表5 1 電動輪椅之電力與控制系統測試方法與要求 105 表5 2 傳輸介面比較表 118 表5 3 第二版下控制器SMD電容零件表 131 表5 4 第二版更新下控制器SMD電容零件表 137 表6 1 斷電式電磁煞車實驗數據彙整表 150 表6 2 第五代無刷直流手輪馬達性能 152 表6 3 閉迴路速度控制與無緩起動速度控制起步最大超越量測試表 157 表6 4 閉迴路速度控制與有緩起動速度控制起步最大超越量測試 158 表6 5 開路速度控制與無煞車控制之空載測試數據表 159 表6 6 開路速度控制與有煞車控制之空載測試數據表 160 表6 7 閉迴路速度控制與無煞車控制之空載測試數據表 161 表6 8 閉迴路速度控制與有煞車控制之空載測試數據表 162 表6 9 開路速度控制與有煞車控制之有載平地測試數據表 165 表6 10 閉迴路速度控制與有煞車控制之有載平地測試數據表 167 表6 11 開路速度控制與三相短路煞車控制之測試數據表 169 表6 12 開路速度控制與磁粉煞車控制之測試數據表 170 表6 13 開路速度控制之7度上坡測試數據表 172 表6 14 閉迴路速度控制之7度上坡測試數據表 173 表6 15 開路速度控制之7度下坡測試數據表 175 表6 16 閉迴路速度控制之7度下坡測試數據表 176 表6 17 第五代新型手輪馬達電動輪椅理論行駛距離測試數據表 177 表6 18 第五代新型手輪馬達電動輪椅量測特性表 178 表6 19 市售可攜式輕型電動輪椅續航力比較表 180 | |
dc.language.iso | zh-TW | |
dc.title | 新型手輪馬達電動輪椅雙動力輪與控制策略的整合 | zh_TW |
dc.title | Integration of Dual Power Wheels and Control Strategy for a Novel Powered Wheelchair Driven by Rim Motors | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉添華(Tian-Hua Liu),林沛群(Pei-Chun Lin) | |
dc.subject.keyword | 手輪馬達,電動輪椅,動力鏈系統,永磁同步馬達,閉迴路速度控制,電磁煞車控制, | zh_TW |
dc.subject.keyword | Rim motor,powered wheelchair,power train system,permanent magnet synchronous motor,closed-loop speed control,electromagnetic brake control, | en |
dc.relation.page | 193 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-22 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 13.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。